

Application Note 374 DS2155 vs. DS21x5y: Software and Hardware Considerations

www.dalsemi.com

This note uses the device number DS21x52 to refer to both the DS21352 and DS21552. Also, references to DS21x54 will correspond to both the DS21354 and DS21554. Whenever DS21x5y is used, it refers to all the parts mentioned above.

1) Overview

The DS2155 is a software selectable T1, J1 or E1 Single Chip Transceiver (SCT) for short and long haul applications. This application note intends to highlight many of the differences between the DS2155 and the previous family of Dallas Semiconductor's SCTs. While, the DS2155 is pin compatible with previous Dallas Semiconductor SCT's (DS2152/54, DS21352/552, & DS21552/554) the register set for the device is much more complex. In the following pages, we will identify features from the DS2155 will be discussed and what provisions need to be made existing DS21x5y designs or new designs in order to use the DS2155. This note is broken into 4 sections. First, the location of DS21x52 (T1) and DS21x54 (E1) features will be linked to the DS2155 register map. The note will then discuss some of the new features that are available to users in all modes of operation. The last section deals with hardware considerations when using the DS2155.

1.1 Contents

Software Considerations: DS2155 vs. DS21x52 (T1) - Page 2 Software Considerations: DS2155 vs. DS21x54 (E1) - Page 17 Brief Overview of the new features in the DS2155 - Page 30 Hardware Considerations: DS2155 vs. DS21x5y - Page 31

1.2 How to Read the Register Mapping Tables

This note will discuss each register of the DS21x52 and DS21x54 SCTs. In some cases the entire register has been kept intact, but has been relocated to a new address. For these cases the new address of the register in the DS2155 along with the DS2155 register abbreviation will be listed. In other cases, single bits from the registers have been relocated to different address. If a bit has been relocated, the DS21x5y register will be presented in the following manner. First, two lines identifying the DS21x5y registers abbreviation, name and hexadecimal address will be given, followed by a register table consisting of 4 rows will follow. The first row of the register table will always be the same and will identify the control bit position in the DS21x5y register. Row 2 will contain the control bit name within the DS21x5y register. The last 2 rows in the register table identify where to find the control bit in the DS2155. Row 3 provides the user with the DS2155's abbreviated register name where the control bit can be found. The last row gives the address and bit number of the new location. For example, a bit that has been relocated in the DS2155 to bit position 3 in the register at the location of address A5 Hex would have the value A5.3 placed in the 55 Addr.Bit row.

DS21x5y Register: RE: Register Example DS21x5y Register Address: xx Hex

Bit #	7	6	5	4	3	2	1	0
Name	B7	B6	B5	B4	B3	B2	B1	B0
55 Register	NEWREG							
55 Addr.Bit	addr.bit							

If the functionality and/or name of the control bit has changed or if additional information is required, it will be indicated by an * in the register table. The additional information for these control bits will be presented below the register table.

2) Software Considerations: DS2155 vs. DS21x52 (T1)

This section will present the registers for the DS21352 and DS21552. The registers are presented in the order that they appear in the DS21352 and DS21552 data sheet.

<u>ID Register</u>

DS21x52 Register:	IDR: Device Identification Register
DS21x52 Register Address:	0F Hex

The Device Identification Register (IDR) for the DS2155 is located at the same address as the IDR for the DS21x52. The upper four bits display the DS2155 ID (1011) and the lower four bits display the die revision.

Receive Control Registers

DS21x52 Register:	RCR1: Receive Control Register 1
DS21x52 Register Address:	2B Hex

Bit #	7	6	5	4	3	2	1	0
Name	LCVCRF	ARC	OOF1	OOF2	SYNCC	SYNCT	SYNCE	RESYNC
55 Abbrv.	ERCNT	T1RCR1						
55 Addr.Bit	41.0	03.6	03.5	03.4	03.3	03.2	03.1	03.0

DS21x52 Register:	RCR2: Receive Control Register 2
DS21x52 Register Address:	2C Hex

Bit #	7	6	5	4	3	2	1	0
Name	RCS	RZBTSI	RSDW	RSM	RSIO	RD4YM	FSBE	MOSCRF
55 Abbrv.	See below	T1RCR2	IOCR1	IOCR1	IOCR1	T1RCR2	ERCNT	ERCNT
55 Addr.Bit	See below	04.2	01.6*	01.5*	01.4	04.0	41.2	41.1

• RSM, bit 4, has been renamed as RSMS1. There is no new functionality associated with the bit.

• RSDW, bit 5, has been renamed as RSMS2. There is no new functionality associated with the bit.

• RCS, bit 7, was used to generate either a 7F idle code or the digital milliwatt pattern. In the DS2155, the digital milliwatt pattern is generated using the T1RDMR1 (0C Hex), T1RDMR2 (0D Hex), and T1RDMR3 (0E Hex) registers. See section 10.1 of the DS2155 data sheet for more information on generating the digital milliwatt pattern. Idle code generation has changed in the DS2155. See section 18 of the DS2155 data sheet for more information.

Transmit Control Registers

DS21x52 Register:	TCR1: Transmit Control Register 1
DS21x52 Register Address:	35 Hex

Bit #	7	6	5	4	3	2	1	0
Name	LOTCMC	TFPT	TCPT	TSSE	GB7S	TFDLS	TBL	TYEL
55 Abbrv.	CCR1	T1TCR1						
55 Addr.Bit	See below	05.6	05.5	05.4	05.3	05.2	05.1	05.0

• LOTCMC, bit 7, has been combined with other functions to simplify the selection of the transmit clock source. The two bits, Transmit Clock Source Select 0 (TCSS0) and Transmit Clock Source Select 1 (TCSS1), are located in the DS2155's Common Control Register 1 (CCR1, address 70 Hex) in bit positions 1 and 2 respectively.

DS21x52 Register:TCR2: Transmit Control Register 2DS21x52 Register Address:36 Hex

Bit #	7	6	5	4	3	2	1	0
Name	TEST1	TEST0	TZBTSI	TSDW	TSM	TSIO	TD4YM	TB7ZS
55 Abbrv.	MSTRREG	MSTRREG	T1TCR2	IOCR1	IOCR1	IOCR1	T1TCR2	T1TCR2
55 Addr.Bit	00.3	00.2	06.1	01.3	01.2	01.1	06.2	06.0

Common Control Registers

DS21x52 Register:CCR1: Common Control Register 1DS21x52 Register Address:37 Hex

Bit #	7	6	5	4	3	2	1	0
Name	TESE	ODF	RSAO	TSCLKM	RSCLKM	RESE	PLB	FLB
55 Abbrv.	ESCR	IOCR1	PCPR	IOCR2	IOCR2	ESCR	LBCR	LBCR
55 Addr.Bit	4F.4	01.0	28.7*	02.1	02.0	4F.0	4A.1	4A.0

• RSAO, bit 5, has been renamed as RSAOICS and been placed in the Per-Channel Pointer Register. In the DS21x52, setting the RSAO bit would force all of the extracted robbed-bit signaling positions to one. If the user wished to invoke this option on a per-channel basis, the RPCSI control bit in CCR4.6 and the receive channel blocking registers had to be set accordingly. In the DS2155, the user sets the RSAOICS bit and then selects, via the Per-Channel Data Register 1-3, the channels in which to force the robbed-bit signaling bits to one. See section 7 of the DS2155 data sheet for more information on per-channel operation.

DS21x52 Register:	CCR2: Common Control Register 2
DS21x52 Register Address:	38 Hex

Bit #	7	6	5	4	3	2	1	0
Name	TFM	TB8ZS	TSLC96	TFDL	RFM	RB8ZS	RSLC96	RZSE
55 Abbrv.	T1CCR1	T1TCR2	T1TCR2	T1TCR2	T1RCR2	T1RCR2	T1RCR2	T1RCR2
55 Addr.Bit	07.2	06.7	06.6	06.5*	04.6	04.5	04.4	04.3

• TFDL, bit 4, has been renamed as TZSE. No additional functionality has been associated with this bit.

DS21x52 Reg DS21x52 Reg	-		Common Con	trol Register	3			
Bit #	7	6	5	4	3	2	1	0
Name	RESMDM	TCLKSRC	RLOSF	RSMS	PDE	ECUS	TLOOP	TESMDM
55 Abbrv.	ESCR	CCR1	CCR1	IOCR1	T1CCR1	ERCNT	T1CCR1	ESCR
55 Addr.Bit	4F.1	See Below	70.0	01.7	07.1	41.5	07.0	4F.5

• TCLKSRC, bit 6, has been combined with other functions to simplify the selection of the transmit clock source. Two bits, Transmit Clock Source Select bit 0 (TCSS0) and bit 1 (TCSS1) are located in the DS2155's Common Control Register 1 (CCR1, address 70 Hex) in bit positions 1 and 2 respectively.

DS21x52 Register:	CCR4: Common Control Register 4
DS21x52 Register Address:	11 Hex

Bit #	7	6	5	4	3	2	1	0
Name	RSRE	RPCSI	RFSA1	RFE	RFF	THSE	TPCSI	TIRFS
55 Abbrv.	PCPR	See Below	See Below	SIGCR	SIGCR	PCPR	See Below	See Below
55 Addr.Bit	28.6*	See Below	See Below	40.4	40.3	28.3*	See Below	See Below

- Control bit 0, TIRFS, has been incorporated in the new functionality for idle code generation. See section 18 of the DS2155 data sheet for more detail.
- Control bit 1, TPCSI, has been incorporated into the per-channel register operation. See sections 7 and 17 of the DS2155 data sheet for additional information.
- THSE, bit 2, has been renamed as THSCS. See sections 7 and 17 of the DS2155 data sheet for information on perchannel register operation.
- RFSA, control bit 5, has been incorporated into the per-channel register function. The user sets the BTCS bit in the PCPR register and selects the channels which are to be forced to one by writing to the PCDR1-PCDR3 registers. See sections 7 and 17 of the DS2155 data sheet for additional information.
- RPCSI, bit 6, has been incorporated into the per-channel register function. See sections 7 and 17 of the DS2155 data sheet for additional information.
- RSRE, bit 7, has been renamed as RSRCS. See sections 7 and 17 of the DS2155 data sheet for additional information on receive signaling re-insertion.

DS21x52 Register:	CCR5: Common Control Register 5
DS21x52 Register Address:	19 Hex

Bit #	7	6	5	4	3	2	1	0
Name	TJC	LLB	LIAIS	TCM4	TCM3	TCM2	TCM1	TCM0
55 Abbrv.	T1TCR1	LBCR	LIC2	TDS0SEL	TDS0SEL	TDS0SEL	TDS0SEL	TDS0SEL
55 Addr.Bit	05.7	4A.3	79.4*	74.4	74.3	74.2	74.1	74.0

• LIAIS, bit 5, has been renamed as TUA1. No additional functionality has been associated with this bit

DS21x52 Regis DS21x52 Regis		CCR6: Co 1E Hex	mmon Con	trol Register	6	
D:+ #	7	6	5	1	2	

Bit #	7	6	5	4	3	2	1	0
Name	RJC	RESA	TESA	RCM4	RCM3	RCM2	RCM1	RCM0
55 Abbrv.	T1RCR2	ESCR	ESCR	RDS0SEL	RDS0SEL	RDS0SEL	RDS0SEL	RDS0SEL
55 Addr.Bit	04.1	4F.3*	4F.7*	76.4	76.3	76.2	76.1	76.0

• TESA, bit 5, has been renamed as TESALGN. There is no new functionality associated with the bit.

• RESA, bit 6, has been renamed as RESALGN. There is no new functionality associated with the bit.

DS21x52 Register:	CCR7: Common Control Register 7
DS21x52 Register Address:	0A Hex

Bit #	7	6	5	4	3	2	1	0
Name	LIRST	RLB	RESR	TESR	-	LIUSI	CDIG	LIUODO
55 Abbrv.	LIC2	LBCR	ESCR	ESCR	-	LIC3	LIC3	LIC2
55 Addr.Bit	79.6	4A.2	4F.2	4F.6	-	7A.2*	7A.0*	79.0*

• LIUODO, bit 0, has been renamed as CLDS. In the DS21x52, this bit determined whether the TTIP and TRING outputs would be open drain or not. In the DS2155, setting this bit to a one will redefine the operation of the transmit line driver. When this bit is set to a one and LIC1.5 = LIC1.6 = LIC1.7 = 0, then the device will generate a square wave at the TTIP and TRING outputs instead of a normal waveform. When this bit is set to a one and LIC1.5 = LIC1.6 = 0 and LIC1.7 = 1, then the device will force TTIP and TRING outputs to become open drain drivers instead of their normal push-pull operation. This bit should be set to zero for normal operation of the DS2155.

• CDIG, bit 1, has been renamed as TAOZ. There is no new functionality associated with the bit.

• LIUSI, bit 2, has been renamed as RSCLKE. There is no new functionality associated with the bit. However, there is now a TSCLKE control bit available in the DS2155, which controls G.703 support for the transmitter.

Status and Information Registers

DS21x52 Register:RIR1: Receive Information Register 1DS21x52 Register Address:22 Hex								
Bit #	7	6	5	4	3	2	1	0
Name	COFA	8ZD	16ZD	RESF	RESE	SEFE	B8ZS	FBE
55 Abbrv.	INFO1	INFO1	INFO1	SR5	SR5	INFO1	INFO1	INFO1
55 Addr.Bit	10.5	10.4	10.3	1E.2	1E.1*	10.2	10.1	10.0

• RESE, bit 3, has been renamed as RESEM. There is no new functionality associated with this bit.

DS21x52 Register:	RIR2: Receive Information Register 2
DS21x52 Register Address:	31 Hex

Bit #	7	6	5	4	3	2	1	0
Name	RLOSC	LRCLC	TESF	TESE	TSLIP	RBLC	RPDV	TPDV
55 Abbrv.	SR2	SR2	SR5	SR5	SR5	SR2	INFO1	INFO1
55 Addr.Bit	18.4	18.5*	1E.5	1E.4*	1E.3	18.6*	10.7	10.6

• RBLC, bit 2, has been renamed as RUA1C. There is no new functionality associated with this bit.

• TESE, bit 4, has been renamed as TESEM. There is no new functionality associated with this bit.

• LRCLC, bit 6, has been replaced by RCLC in the DS2155. The functionality of the bit is the same. The difference is where the clear criteria is monitored. In the DS21x52, the bit was monitoring RTIP/RRING for the clear criteria. In the DS2155, the RCLC bit is cleared based on data into the framer, not the line interface.

DS21x52 Register:	RIR3: Receive Information Register 3
DS21x52 Register Address:	10 Hex

Bit #	7	6	5	4	3	2	1	0
Name	RL1	RL0	JALT	LORC	FRCL	-	-	-
55 Abbrv.	INFO2	INFO2	SR1	SR3	SR2	-	-	-
55 Addr.Bit	See Below	See Below	16.4	1A.3	18.1*	-	-	-

• FRCL, bit 3, has been renamed as RCL. There is no new functionality associated with this bit.

• RL0, bit 6, and RL1, bit 7, have been replaced by additional monitoring capabilities. The DS2155 will report the signal strength at RTIP and RRING in 2.5dB increments via RL3-RL0 located in Information Register 2 (INFO2, address = 11 Hex). This feature is helpful when trouble shooting line performance problems.

DS21x52 Register:	SR1: Status Register 1
DS21x52 Register Address:	20 Hex

Bit #	7	6	5	4	3	2	1	0
Name	LUP	LDN	LOTC	RSLIP	RBL	RYEL	LRCL	RLOS
55 Abbrv.	SR3	SR3	SR3	SR5	SR2	SR2	SR1	SR2
55 Addr.Bit	1A.5	1A.6	1A.4	1E.0	18.2*	18.3	16.3	18.0

• RBL, bit 3, has been renamed as RUA1. There is no new functionality associated with this bit.

DS21x52 Register:	SR2: Status Register 2
DS21x52 Register Address:	21 Hex

Bit #	7	6	5	4	3	2	1	0
Name	RMF	TMF	SEC	RFDL	TFDL	RMTCH	RAF	RSC
55 Abbrv.	SR4	SR4	SR1	SR8	SR8	SR8	SR8	SR1
55 Addr.Bit	1C.2	1C.4	16.6*	24.3*	24.2*	24.1	24.4*	16.5*

- RSC, bit 0, has been renamed as RSCOS. In the DS21x52, this bit was set when the DS21x52 detected a change of state in ANY of the robbed-bit signaling bits. The DS2155 allows the user to select the channels that will be monitored. Via the Receive Signaling Change Of State Interrupt Enable Registers (RSCSE through RSCSE4), the user can select the channels in which a change of state in the robbed-bit signaling bits will set this status bit.
- RAF, bit 1, has been renamed as RFDLAD. There is no new functionality associated with this bit.
- TFDL, bit 3, has been renamed as TFDLE. There is no new functionality associated with this bit.
- RFDL, bit 4, has been renamed as RFDLF. There is no new functionality associated with this bit.
- SEC, bit 5, has been renamed as TIMER. In the DS21x52, this bit was set on increments of one second (referenced to RCLK). In the DS2155, this bit follows the error counter update interval as determined by the ECUS bit in the Error Counter Configuration Register (ERCNT). In T1 mode, this bit can be configured to set on increments of 1 second or 42ms (referenced to RCLK).

DS21x52 Register:	IMR1: Interrupt Mask Register 1
DS21x52 Register Address:	7F Hex

Bit #	7	6	5	4	3	2	1	0
Name	LUP	LDN	LOTC	SLIP	RBL	RYEL	LRCL	RLOS
55 Abbrv.	IMR3	IMR3	IMR3	IMR5	IMR2	IMR2	IMR1	IMR2
55 Addr.Bit	1B.5	1B.6	1B.4	1F.0*	19.2*	19.3	17.3	19.0

• RBL, bit 3, has been renamed as RUA1. There is no new functionality associated with this bit.

• SLIP, bit 2, has been renamed as RSLIP. There is no new functionality associated with this bit.

DS21x52 Register:	IMR2: Interrupt Mask Register 2
DS21x52 Register Address:	6F Hex

Bit #	7	6	5	4	3	2	1	0
Name	RMF	TMF	SEC	RFDL	TFDL	RMTCH	RAF	RSC
55 Abbrv.	IMR4	IMR4	IMR1	IMR8	IMR8	IMR8	IMR8	IMR1
55 Addr.Bit	1D.2	1D.4	17.6*	25.3*	25.2*	25.1	25.4*	17.5*

• RSC, bit 0, has been renamed as RSCOS. In the DS21x52, this bit would enable the device to generate an interrupt when the DS21x52 detected a change of state in ANY of the robbed-bit signaling bits. The DS2155 allows the user to select the channels that will be monitored. Via the Receive Signaling Change Of State Interrupt Enable Registers (RSCSE through RSCSE4), the user can select the channels in which a change of state in the robbed-bit signaling bits will generate an interrupt provided the RSCOS bit is set by the user.

- RAF, bit 1, has been renamed as RFDLAD. There is no new functionality associated with this bit.
- TFDL, bit 3, has been renamed as TFDLE. There is no new functionality associated with this bit.
- RFDL, bit 4, has been renamed as RFDLF. There is no new functionality associated with this bit.
- SEC, bit 5, has been renamed as TIMER. In the DS21x52, this bit enabled the interrupt on increments of one second (referenced to RCLK). In the DS2155, this bit follows the error counter update interval as determined by the ECUS bit in the Error Counter Configuration Register (ERCNT). In T1 mode, this bit can be configured to interrupt on increments of 1 second or 42ms (referenced to RCLK).

Error Count Registers

The error count registers have been kept intact, but have been relocated. In addition, the Path Code Violation Count Register 1 and the Multiframes Out Of Sync Count Register 1 no longer share a common address and therefore are both 16-bit counters. See section 15 in the DS2155 data sheet for additional information on the error count registers.

DS21x52 Registers:	LCVCR1, LCVCR2: Line Code Violation Count Register 1 & 2
DS21x52 Register Address:	23 Hex, 24 Hex
DS21x52 Registers:	PCVCR1, PCVCR2: Path Code Violation Count Register 1 & 2
DS21x52 Register Address:	25 Hex (Same as MOSCR1), 26 Hex
DS21x52 Register:	MOSCR1, MOSCR2: Multiframes Out Of Sync Count Register 1 & 2
DS21x52 Register Address:	25 Hex (Same as PCVCR1), 27 Hex

DS21x52 Register	DS21x52 Register Abbreviation	DS2155 Register Abbreviation	DS2155 Address (Hex)
Line Code Violation Count Register 1	LCVCR1 (23Hex)	LCVCR1	42
Line Code Violation Count Register 2	LCVCR2 (24 Hex)	LCVCR2	43
Path Code Violation Count Register 1	PCVCR1 (25 Hex)*	PCVCR1	44
Path Code Violation Count Register 1	PCVCR2 (26 Hex)	PCVCR2	45
Multiframes Out Of Sync Count Register 1	MOSCR1 (25 Hex)*	FOSCR1	46
Multiframes Out Of Sync Count Register 2	MOSCR2 (27 Hex)	FOSCR2	47

• In the DS21x52, PCVCR1 and MOSCR1 shared the count register located at address 25 Hex. The two error counters no longer share a register in the DS2155.

DS0 Monitoring Function Registers

Both the Transmit DS0 Monitor Register and Receive DS0 Monitor Register has been relocated to a new address.

DS21x52 Register:	TDS0M: Transmit DS0 Monitor Register
DS21x52 Register Address:	1A Hex

DS21x52 Register:RDS0M: Receive DS0 Monitor RegisterDS21x52 Register Address:1F Hex

DS21x52 Register	DS21x52 Register Abbreviation	DS2155 Register Abbreviation	DS2155 Address (Hex)
Transmit DS0 Monitor Register	TDS0M (1A Hex)	TDS0M	75
Receive DS0 Monitor Register	RDS0M (1F Hex)	RDS0M	77

Signaling Registers

Receive Signaling Registers 1 through 12 can be found at the same address. However, the signaling information contained in the signaling registers has been rearranged. See section 17 of the DS2155 data sheet for additional information on signaling operation.

DS21x52 Register:	RS1 to RS12: Receive Signaling Registers
DS21x52 Register Address:	60 to 6B Hex

- Receive Signaling Registers 1 through 12 can be found at the same address.
- In the ESF framing mode, there can be up to four signaling bits per channel (A, B, C, and D). In the D4 framing mode, there are only two signaling bits per channel (A and B). In the D4 framing mode, the framer will replace the C and D signaling bit positions with the A and B signaling bits from the previous multiframe. Hence, whether the framer is operated in either framing mode, the user needs only to retrieve the signaling bits every 3 ms. The Receive Signaling Registers are frozen and not updated during a loss of sync condition (SR2.0 = 1). They will contain the most recent signaling information before the "OOF" occurred.
- The following table shows the new the arrangement for the Receive Signaling Registers. In T1 mode, RS13-RS16 are not used.

(MSB)							(LSB)	Register Name	DS2155 Address
CH2-A	CH2-B	CH2-C	CH2-D	CH1-A	CH1-B	CH1-C	CH1-D	RS1	60
CH4-A	CH4-B	CH4-C	CH4-D	CH3-A	CH3-B	CH3-C	CH3-D	RS2	61
CH6-A	CH6-B	CH6-C	CH6-D	CH5-A	CH5-B	CH5-C	CH5-D	RS3	62
CH8-A	CH8-B	CH8-C	CH8-D	CH7-A	CH7-B	CH7-C	CH7-D	RS4	63
CH10-A	CH10-B	CH10-C	CH10-D	CH9-A	CH9-B	CH9-C	CH9-D	RS5	64
CH12-A	CH12-B	CH12-C	CH12-D	CH11-A	CH11-B	CH11-C	CH11-D	RS6	65
CH14-A	CH14-B	CH14-C	CH14-D	CH13-A	CH13-B	СН13-С	CH13-D	RS7	66
CH16-A	CH16-B	CH16-C	CH16-D	CH15-A	CH15-B	CH15-C	CH15-D	RS8	67
CH18-A	CH18-B	CH18-C	CH18-D	CH17-A	СН17-В	CH17-C	CH17-D	RS9	68
CH20-A	CH20-B	CH20-C	CH20-D	CH19-A	СН19-В	CH19-C	CH19-D	RS10	69
CH22-A	CH22-B	CH22-C	CH22-D	CH21-A	CH21-B	CH21-C	CH21-D	RS11	6A
CH24-A	CH24-B	CH24-C	CH24-D	CH23-A	СН23-В	СН23-С	CH23-D	RS12	6B
CH26-A	CH26-B	CH26-C	CH26-D	CH25-A	CH25-B	CH25-C	CH25-D	RS13	6C
CH28-A	CH28-B	CH28-C	CH28-D	CH27-A	CH27-B	СН27-С	CH27-D	RS14	6D
CH30-A	CH30-B	СН30-С	CH30-D	СН29-А	CH29-B	СН29-С	CH29-D	RS15	6E
CH32-A	СН32-В	СН32-С	CH32-D	CH31-A	CH31-B	CH31-C	CH31-D	RS16	6F

DS21x52 Register:TS1 to TS12: Transmit Signaling RegistersDS21x52 Register Address:70 to 7B Hex

- Transmit Signaling Registers 1 through 12 can be found at addresses 50 Hex through 5B Hex.
- In T1 ESF framing mode, there are four signaling bits per channel (A, B, C, and D). TS1 TS12 contain a full multiframe of signaling data. In T1 D4 framing mode, there are only two signaling bits per channel (A and B). In T1 D4 framing mode, the framer uses the C and D bit positions as the A and B bit positions for the next multiframe.
- In D4 mode, two multiframes of signaling data can be loaded into TS1 TS12. The framer will load the contents of TS1 TS12 into the outgoing shift register every other D4 multiframe. In D4 mode the host should load new contents into TS1 TS12 on every other multiframe boundary and no later than 120us after the boundary.
- The following tables show the new the arrangement for the Transmit Signaling Registers for ESF and D4 formats.

TRAN	NSMIT SI	GNALIN	G REGIS	TERS (T	1 MODE,	ESF FOR	MAT)

(MSB)							(LSB)	Register	DS2155 Address
CH2-A	CH2-B	CH2-C	CH2-D	CH1-A	CH1-B	CH1-C	CH1-D	TS1	50
CH4-A	CH4-B	CH4-C	CH4-D	CH3-A	CH3-B	CH3-C	CH3-D	TS2	51
CH6-A	CH6-B	CH6-C	CH6-D	CH5-A	CH5-B	CH5-C	CH5-D	TS3	52
CH8-A	CH8-B	CH8-C	CH8-D	CH7-A	CH7-B	CH7-C	CH7-D	TS4	53
CH10-A	CH10-B	CH10-C	CH10-D	CH9-A	CH9-B	CH9-C	CH9-D	TS5	54
CH12-A	CH12-B	CH12-C	CH12-D	CH11-A	CH11-B	CH11-C	CH11-D	TS6	55
CH14-A	CH14-B	CH14-C	CH14-D	CH13-A	CH13-B	СН13-С	CH13-D	TS7	56
CH16-A	CH16-B	CH16-C	CH16-D	CH15-A	CH15-B	CH15-C	CH15-D	TS8	57
CH18-A	CH18-B	CH18-C	CH18-D	CH17-A	CH17-B	CH17-C	CH17-D	TS9	58
CH20-A	CH20-B	СН20-С	CH20-D	CH19-A	СН19-В	CH19-C	CH19-D	TS10	59
CH22-A	CH22-B	CH22-C	CH22-D	CH21-A	CH21-B	CH21-C	CH21-D	TS11	5A
CH24-A	CH24-B	CH24-C	CH24-D	CH23-A	СН23-В	СН23-С	CH23-D	TS12	5B

TRANSMIT SIGNALING REGISTERS (T1 MODE, D4 FORMAT)

(MSB)							(LSB)	Register	DS2155 Address
CH2-A	CH2-B	CH2-A	CH2-B	CH1-A	CH1-B	CH1-A	CH1-B	TS1	50
CH4-A	CH4-B	CH4-A	CH4-B	CH3-A	CH3-B	СН3-А	СН3-В	TS2	51
CH6-A	CH6-B	СН6-А	CH6-B	CH5-A	CH5-B	CH5-A	CH5-B	TS3	52
CH8-A	CH8-B	CH8-A	CH8-B	CH7-A	CH7-B	CH7-A	CH7-B	TS4	53
CH10-A	CH10-B	СН10-А	СН10-В	CH9-A	CH9-B	СН9-А	СН9-В	TS5	54
CH12-A	CH12-B	СН12-А	CH12-B	CH11-A	CH11-B	CH11-A	CH11-B	TS6	55
CH14-A	CH14-B	CH14-A	CH14-B	CH13-A	СН13-В	СН13-А	CH13-B	TS7	56
CH16-A	CH16-B	CH16-A	CH16-B	CH15-A	CH15-B	CH15-A	СН15-В	TS8	57
CH18-A	CH18-B	CH18-A	CH18-B	CH17-A	СН17-В	CH17-A	СН17-В	TS9	58
CH20-A	CH20-B	СН20-А	СН20-В	CH19-A	CH19-B	СН19-А	СН19-В	TS10	59
CH22-A	CH22-B	СН22-А	СН22-В	CH21-A	CH21-B	CH21-A	CH21-B	TS11	5A
CH24-A	CH24-B	СН24-А	CH24-B	СН23-А	СН23-В	СН23-А	СН23-В	TS12	5B

Note: In D4 format, TS1-TS12 contains signaling data for two frames. Bold type indicates data for second frame.

Per-Channel Code (Idle) Generation Registers

The method for generating idle codes has changed in the DS2155. The DS2155 contains a 64-byte Idle Code Array accessed by the Idle Array Address Register (IAAR) and the Per-Channel Idle Code Register (PCICR). The contents of the array contain the idle codes to be substituted into the appropriate transmit or receive channels. This substitution can be enabled and disabled on a per-channel basis by the Transmit Channel Idle Code Enable registers (TCICE1-4) and Receive Channel Idle Code Enable registers (RCICE1-4). The following table gives the DS2155 register that closely resembles the corresponding DS21x52 register. See section 18 of the DS2155 for additional information on per-channel idle code generation.

DS21x52 Register:	TIR1, TIR2, TIR3: Transmit Idle Registers 1, 2, 3
DS21x52 Register Address:	3C, 3D, 3E Hex
DS21x52 Register:	TIDR: Transmit Idle Definition Register
DS21x52 Register Address:	3F Hex
DS21x52 Register:	TCC1, TCC2, TCC3: Transmit Channel Control Registers
DS21x52 Register Address:	16, 17, 18 Hex
DS21x52 Register:	RMR1, RMR2, RMR3: Receive Mark Registers
DS21x52 Register Address:	2D, 2E, 2F Hex
DS21x52 Register:	TC1 to TC24: Transmit Channel Registers
DS21x52 Register Address:	50 to 57 Hex & 40 to 4F Hex
DS21x52 Register:	RC1 to RC24: Receive Channel Registers
DS21x52 Register Address:	80 to 8F Hex & 58 to 5F Hex
DS21x52 Register:	RCC1, RCC2, RCC3: Receive Channel Control Registers
DS21x52 Register Address:	1B, 1C, 1D Hex

DS21x52 Register	DS21x52 Register Abbreviation	DS2155 Register Abbreviation	DS2155 Address (Hex)
Transmit Idle Register 1	TIR1 (3C Hex)	TCICE1	80
Transmit Idle Register 2	TIR2 (3D Hex)	TCICE2	81
Transmit Idle Register 3	TIR3 (3E Hex)	TCICE3	82
Transmit Idle Definition Register	TIDR (3F Hex)	PCICR	7F
Transmit Channel Control Register 1	TCC1 (16 Hex)	PCDR1	29
Transmit Channel Control Register 2	TCC2 (17 Hex)	PCDR2	2A
Transmit Channel Control Register 3	TCC3 (18 Hex)	PCDR3	2B
Receive Mark Register 1	RMR1 (2D Hex)	RCICE1	84
Receive Mark Register 2	RMR1 (2E Hex)	RCICE2	85
Receive Mark Register 3	RMR1 (2F Hex)	RCICE3	86
Transmit Channel Registers 1 to 24	TC1 to TC24	*	*
Receive Channel Registers 1 to 24	RC1 to RC24	*	*
Receive Channel Control Registers 1-3	RCC1 to RCC3	*	*

• TC1 to TC24, RC1 to RC24, and RCC1 to RCC3 have been incorporated in the new functionality of the per-channel idle code generation. See section 18 of the DS2155 data sheet for more detail.

Channel Blocking Registers

DS21x52 Register:RCBR1, RCBR2DS21x52 Register Address:6C, 6D, 6E Hex

RCBR1, RCBR2, RCBR3: Receive Channel Block Registers 6C, 6D, 6E Hex

DS21x52 Register: DS21x52 Register Address: TCBR1, TCBR2, TCBR3: Transmit Channel Block Registers 32, 33, 34 Hex

DS21x52 Register	DS21x52 Register Abbreviation	DS2155 Register Abbreviation	DS2155 Address (Hex)
Receive Channel Block Register 1	RCBR1 (6C Hex)	RCBR1	88
Receive Channel Block Register 2	RCBR2 (6D Hex)	RCBR2	89
Receive Channel Block Register 3	RCBR3 (6E Hex)	RCBR3	8A
Transmit Channel Block Register 1	TCBR1 (32 Hex)	TCBR1	8C
Transmit Channel Block Register 2	TCBR2 (33 Hex)	TCBR2	8D
Transmit Channel Block Register 3	TCBR3 (34 Hex)	TCBR3	8E

HDLC Registers

DS21x52 Register:

DS21x52 Register Address:

While the DS21x52 has only one HDLC controller, the DS2155 has two enhanced HDLCs. Each controller is configurable for use with time slots, or Sa4 to Sa8 bits (E1 Mode) or the FDL (T1 Mode). The transmit and receive path buffers in the DS2155 have been doubled to 128-bytes. When used with time slots, the user can select any time slot or multiple time slots, contiguous or non-contiguous, as well as any specific bits within the time slot(s) to assign to the HDLC controllers.

The HDLC controller performs the necessary overhead for generating and receiving Performance Report Messages (PRM) as described in ANSI T1.403 and the messages as described in AT&T TR54016. The HDLC controller automatically generates and detects flags, generates and checks the CRC check sum, generates and detects abort sequences, stuffs and de-stuffs zeros, and byte aligns to the data stream. The 128–byte buffers in the HDLC controller are large enough to allow a full PRM to be received or transmitted without host intervention.

The user must take care to not map both transmit HDLC controllers to the same Sa bits, time slots or, in T1 mode, map both controllers to the FDL. HDLC #1 and HDLC #2 are identical in operation and therefore, when applicable, each DS21x52 register bit will be mapped to two addresses.

Bit #	7	6	5	4	3	2	1	0
Name	RBR	RHR	TFS	THR	TABT	TEOM	TZSD	TCRCD
55 Abbrv.	BOCC	HxRC*	HxTC*	HxTC*	HxTC*	HxTC*	HxTC*	HxTC*
55 Addr.Bit	37.3	31.7 32.7	90.3 A0.3	90.5 A0.5	See below	90.2 A0.2	90.1 A0.1	90.0 A0.0

• HxTC refers to H1TC and H2TC located at addresses 90 Hex and A0 Hex respectively.

HCR: HDLC Control Register

00 Hex

• HxRC refers to H1RC and H2RC located at addresses 31 Hex and 32 Hex respectively.

• TABT, bit 3, has been incorporated into the Transmit HDLC Reset (THR) bit.

DS21x52 Register:	HSR: HDLC Status Register
DS21x52 Register Address:	01 Hex

Bit #	7	6	5	4	3	2	1	0
Name	RBOC	RPE	RPS	RHALF	RNE	THALF	TNF	TMEND
55 Abbrv.	SR8	SR6 SR7	SR6 SR7	SR6 SR7	SR6 SR7	SR6 SR7	SR6 SR7	SR6 SR7
55 Addr.Bit	24.0	20.5 22.5	20.4 22.4	20.3* 22.3*	20.2 22.2	20.1* 22.1*	20.0 22.0	20.6 22.6

• The status bits for HDLC #1 have been mapped to Status Register 6 (SR6) in the DS2155.

• The status bits for HDLC #2 have been mapped to Status Register 7 (SR7) in the DS2155.

• THALF, bit 2, has been renamed to TLWM. In the DS21x52, THALF is set when the transmit 64-byte FIFO empties beyond the halfway point. For the DS2155, the TLWM bit will be set when the transmit 128-byte FIFO empties beyond the low water mark as defined by the TFLWM0-TFLWM2 bits located in the FIFO control register (H1FC, H2FC). The low water mark is programmable to one of 8 different levels.

• RHALF, bit 4, has been renamed to RHWM. In the DS21x52, RHALF is set when the receive 64-byte FIFO fills beyond the halfway point. For the DS2155, the RHWM bit will be set when the receive 128-byte FIFO fills beyond the high water mark as defined by the RFHWM0-RFHWM2 bits located in the FIFO control register (H1FC, H2FC). The high water mark is programmable to one of 8 different levels.

DS21x52 Register:	HIMR: HDLC Interrupt Mask Register
DS21x52 Register Address:	02 Hex

Bit #	7	6	5	4	3	2	1	0
Name	RBOC	RPE	RPS	RHALF	RNE	THALF	TNF	TMEND
55 Abbrv.	IMR8	IMR6	IMR6	IMR6	IMR6	IMR6	IMR6	IMR6
	Πνικο	IMR7	IMR7	IMR7	IMR7	IMR7	IMR7	IMR7
55 Addr.Bit	25.0	21.5	21.4	21.3*	21.2	21.1*	21.0	21.6
	23.0	23.5	23.4	23.3*	23.2	23.1*	23.0	23.6

• The interrupt mask bits for HDLC #1 have been mapped to HDLC Interrupt Mask Register 6 (IMR6) in the DS2155.

• The interrupt mask bits for HDLC #2 have been mapped to HDLC Interrupt Mask Register 7 (IMR7) in the DS2155.

• THALF, bit 2, has been renamed to TLWM. When THALF is enabled in the DS21x52, the device will generate an interrupt when the transmit 64-byte FIFO empties beyond the halfway point. For the DS2155, the device will generate an interrupt, if TLWM is enabled, when the transmit 128-byte FIFO empties beyond the low water mark as defined by the TFLWM0-TFLWM2 bits located in the FIFO control register (H1FC, H2FC). The low water mark is programmable to one of 8 different levels.

• RHALF, bit 4, has been renamed to RLWM. When RHALF is enabled in the DS21x52, the device will generate an interrupt when the receive 64-byte FIFO fills beyond the halfway point. For the DS2155, the device will generate an interrupt, if RHWM is enabled, when the receive 128-byte FIFO fills beyond the high water mark as defined by the RFHWM0-RFHWM2 bits located in the FIFO control register (H1FC, H2FC). The high water mark is programmable to one of 8 different levels.

DS21x52 Register:	RHIR: Receive HDLC Information Register
DS21x52 Register Address:	03 Hex

Bit #	7	6	5	4	3	2	1	0
Name	RABT	RCRCE	ROVR	RVM	REMPTY	POK	CBYTE	OBYTE
55 Abbrv.	INFO5	INFO5	INFO5	INFO5	INFO5	INFO5	HxRPBA*	INFO4*
	INFO6	INFO6	INFO6	INFO6	INFO6	INFO6	ΠΧΚΓΔΑ΄	INFO4
55 Addr.Bit	See below	See below	See below	See below	2E.3	See below	9C.7*	#1 2D.1*
	See below	See below	See below	See below	2F.3	See Delow	AC.7*	#2 2D.3*

- The HDLC information bits for HDLC #1 have been mapped to the Receive HDLC #1 Information Register, INFO5.
- The HDLC information bits for HDLC #2 have been mapped to the Receive HDLC #2 Information Register, INFO6.
- OBYTE, bit 0, is renamed as H1OBT for HDLC #1 and H2OBT for HDLC #2. Both H1OBT & H2OBT can be found in the HDLC Event Information Register (INFO4, address 2D Hex). There is no new functionality associated with this bit.
- HxRPBA refers to H1RPBA and H2RPBA, located at addresses 9C Hex and AC Hex respectively.
- CBYTE, bit 1, has been renamed as MS. Unlike the operation of the CBYTE bit in the DS21x52, the MS bit will be low when the byte available for reading the receive FIFO is the last byte of a message. MS will be high when the byte available for reading is the first byte of the continuation of a message.
- POK, bit 2, has been incorporated into the Receive Packet Status bits (PS0-PS2) located in INFO5 and INFO6.
- RVM, bit 4, has been incorporated into the Receive Packet Status bits (PS0-PS2) located in INFO5 and INFO6.
- ROVR, bit 5, has been incorporated into the Receive Packet Status bits (PS0-PS2) located in INFO5 and INFO6.
- RCRCE, bit 6, has been incorporated into the Receive Packet Status bits (PS0-PS2) located in INFO5 and INFO6.
- RABT, bit 7, has been incorporated into the Receive Packet Status bits (PS0-PS2) located in INFO5 and INFO6.

DS21x52 Register:	RBOC: Receive Bit Oriented Code Register
DS21x52 Register Address:	04 Hex

Bit #	7	6	5	4	3	2	1	0
Name	LBD	BD	BOC5	BOC4	BOC3	BOC2	BOC1	BOC0
55 Abbrv.	SR2	INFO2	See below					
55 Addr.Bit	18.7	11.6	See below					

• BOC0-BOC5, bits 0-5, share the RFDL register in the DS2155. See section 22 of the DS2155 for additional information on the BOC controller.

DS21x52 Register:	RHFR: Receive HDLC FIFO
DS21x52 Register Address:	05 Hex

- The Receive HDLC FIFO Register has been relocated to address 9E Hex for HDLC #1 and AE Hex for HDLC #2.
- The lower 7 bits of the Receive Packet Bytes Available registers (H1RPBA, H2RPBA) indicate the number of bytes that can be read from the receive FIFO. The value indicated by the lower seven bits in these registers informs the host as to how many bytes can be read from the receive FIFO without going past the end of a message. This value will refer to one of four possibilities, the first part of a packet, the continuation of a packet, the last part of a packet, or a complete packet. After reading the number of bytes indicated by this register the host then checks the HDLC Information register for detailed message status. See section 24.4.2 of the DS2155 data sheet for additional information.

DS21x52 Register:	THIR: Transmit HDLC Information Register
DS21x52 Register Address:	06 Hex

Bit #	7	6	5	4	3	2	1	0
Name	-	-	-	-	-	TEMPTY	TFULL	TUDR
55 Abbrv.						INFO5	INFO5	INFO4*
	-	-	-	-	-	INFO6	INFO6	INFO4
55 Addr.Bit						2E.5	2E.4	#1 2D.1*
	-	-	-	-	-	2F.5	2F.4	#2 2D.3*

• TUDR, bit 0, is renamed as H1UDR for HDLC #1 and H2UDR for HDLC #2. Both H1UDR & H2UDR can be found in the HDLC Event Information Register (INFO4, address 2D Hex). There is no new functionality associated with this bit.

DS21x52 Register:	TBOC: Transmit Bit Oriented Code Register
DS21x52 Register Address:	07 Hex

Bit #	7	6	5	4	3	2	1	0
Name	SBOC	HBEN	BOC5	BOC4	BOC3	BOC2	BOC1	BOC0
55 Abbrv.	BOCC	HxTC*	See below					
55 Addr.Bit	37.0	90.4* A0.4*	See below					

- BOC0-BOC5, bits 0-5, share the TFDL register in the DS2155. See section 22 of the DS2155 for additional information on the BOC controller.
- HxTC refers to H1TC and H2TC located at addresses 90 Hex and A0 Hex respectively.
- HBEN, bit 6, has been renamed as THMS. The THMS bit behaves in a different manner than the HBEN bit. See section 22 and 24 of the DS2155 for more information about the HDLCs operation.

DS21x52 Register:	THFR: Transmit HDLC FIFO
DS21x52 Register Address:	08 Hex

- The Transmit HDLC FIFO Register has been relocated to address 9D Hex for HDLC #1 and AD Hex for HDLC #2.
- The Transmit FIFO Buffer Available registers (H1TFBA, H2TFBA) indicate the number of bytes that can be written into the transmit FIFOs. The count from this register informs the host as to how many bytes can be written into the transmit FIFO without overflowing the buffer

DS21x52 Register:	RDC1: Receive HDLC DS0 Control Register 1
DS21x52 Register Address:	90 Hex

Bit #	7	6	5	4	3	2	1	0
Name	RDS0E	-	RDS0M	RD4	RD3	RD2	RD1	RD0
55 Abbrv.	HxRC	-	See below					
55 Addr.Bit	31.6* 32.6*	-	See below					

- RD0 through RD4, bits 0 to 4, and RDS0M, bit 5, have been replaced by registers H1RCS1 to H1RCS4 for HDLC #1 and H2RCS1 to H2RCS4 for HDLC #2. Any channel or combination of channels, contiguous or not, can be assigned to an HDLC controller. When assigned to a channel(s) any combination of bits within the channel(s) can be avoided. See section 24.3 of the DS2155 for additional information on mapping the HDLC data to channels.
- HxRC refers to H1RC and H2RC located at addresses 31 Hex and 32 Hex respectively.
- RDS0E, bit 7, has been renamed to RHMS. The operation of this bit is inverted from that of the DS21x52. See section 24 of the DS2155 for additional information.

DS21x52 Register:RDC2: Receive HDLC DS0 Control Register 2DS21x52 Register Address:91 Hex

• Receive HDLC DS0 Control Register 2 has been relocated to 96 Hex for HDLC #1 and A6 Hex for HDLC #2.

DS21x52 Register:	FDC1: Transmit HDLC DS	0 Control Register 1
DS21x52 Register Address:	92 Hex	

Bit #	7	6	5	4	3	2	1	0
Name	TDS0E	-	TDS0M	TD4	TD3	TD2	TD1	TD0
55 Abbrv.	HxTC	-	See below					
55 Addr.Bit	90.4*		See below					
	A0.4*	-	see below					

- TD0 through TD4, bits 0 to 4, and TDS0M, bit 5, have been replaced by registers H1TCS1 to H1TCS4 for HDLC #1 and H2TCS1 to H2TCS4 for HDLC #2. Any channel or combination of channels, contiguous or not, can be assigned to an HDLC controller. When assigned to a channel(s) any combination of bits within the channel(s) can be avoided. See section 24.3 of the DS2155 for additional information on mapping the HDLC data to channels.
- HxTC refers to H1TC and H2TC located at addresses 90 Hex and A0 Hex respectively.
- TDS0E, bit 7, has been renamed to THMS. The operation of this bit is inverted from that of the DS21x52. See section 24 of the DS2155 for additional information.

DS21x52 Register:	TDC2: Transmit HDLC DS0 Control Register 2
DS21x52 Register Address:	93 Hex

• Transmit HDLC DS0 Control Register 2 has been relocated to 9B Hex for HDLC #1 and AB Hex for HDLC #2.

DS21x52 Register:	RFDL: Receive FDL Register
DS21x52 Register Address:	28 Hex

- The Receive FDL Register has been relocated to address C0 Hex.
- The RFDL register will operate as the receive BOC message and information register when the receive BOC function is enabled by setting BOCC.4 to 1. The lower six bits of the RFDL register will contain the BOC message bits when used in this configuration. See section 22 of the DS2155 data sheet for more information.

DS21x52 Register:	RFDLM1, RFDLM2: Receive FDL Match Registers
DS21x52 Register Address:	29 & 2A Hex

• Receive FDL Match Registers 1 and 2 have been relocated to address C2 Hex and C3 Hex, respectively.

DS21x52 Register:	TFDL: Transmit FDL Register
DS21x52 Register Address:	7E Hex

- The Transmit FDL Register has been relocated to address C1 Hex.
- The TFDL register will operate as the transmit BOC message register when the transmit BOC function is enabled by setting BOCC.0 to 1. The lower six bits of the TFDL register will contain the BOC message to be transmitted. See section 22 of the DS2155 data sheet for additional information.

Line Interface, Programmable In-Band Loop Code, and Transmit Transparency Registers

DS21x52 Register:	LICR: Line Interface Control Register
DS21x52 Register Address:	7C Hex
DS21x52 Register:	IBCC: In-Band Code Control Register
DS21x52 Register Address:	12 Hex
DS21x52 Register:	TCD: Transmit Code Definition Register
DS21x52 Register Address:	13 Hex
DS21x52 Register:	RUPCD: Receive Up Code Definition Register
DS21x52 Register Address:	14 Hex
DS21x52 Register:	RDNCD: Receive Down Code Definition Register
DS21x52 Register Address:	15 Hex
DS21x52 Register: DS21x52 Register Address:	TTR1, TTR2, TTR3: Transmit Transparency Registers 39, 3A, 3B Hex

DS21x52 Register	DS21x52 Register	DS2155 Register	DS2155
	Abbreviation	Abbreviation	Address (Hex)
Line Interface Control Register	LICR (7C Hex)	LIC1	78
In-Band Code Control Register	IBCC (12 Hex)	IBCC	B6
Transmit Code Definition Register	TCD (13 Hex)	TCD1*	B7*
Receive Up Code Definition Register	RUPCD (14 Hex)	RUPCD1*	B9*
Receive Down Code Definition Register	RDNCD (15 Hex)	RDNCD1*	BB*
Transmit Transparency Register 1	TTR1	SSIE1	08
Transmit Transparency Register 2	TTR2	SSIE2	09
Transmit Transparency Register 3	TTR3	SSIE3	0A

• The DS2155's programmable in-band loop code generation and detection includes support for 16-bit codes. In adding this feature a second register has been added for transmit code definition and receive up/down code definition. For generation or detection of 8 bit patterns, both of the appropriate definition registers must be filled with the same value. See section 26 of the DS2155 data sheet for additional information.

Interleaved PCM Bus Operation Register

The interleave bus operation has been converted to full software control in the DS2155 and the external pins associated with this option have been reassigned to the extended system information bus function. See section 29 for more detail on the interleaved PCM bus operation.

DS21x54 Register:	IBO: Interleaved Bus Operation Register
DS21x54 Register Address:	94 Hex

Bit #	7	6	5	4	3	2	1	0
Name	-	-	-	-	IBOEN	INTSEL	MSEL0	MSEL1
55 Abbrv.	-	-	-	-	IBOC	IBOC	See below	See below
55 Addr.Bit	-	-	-	-	C5.3	C5.3*	See below	See below

- MSEL0 and MSEL1 are not included in the DS2155.
- INTSEL, bit 2, has been renamed IBOSEL. There is no new functionality associated with this control bit.

3) Software Considerations: DS2155 vs. DS21x54 (E1)

This section will present the registers for the DS21354 and DS21554. The registers are presented in the order that they appear in the DS21354 and DS21554 data sheet.

<u>ID Register</u>

DS21x54 Register:	IDR: Device Identification Register
DS21x54 Register Address:	0F Hex

The Device Identification Register (IDR) for the DS2155 is located at the same address as the IDR for the DS21x54. The upper four bits display the DS2155 ID (1011) and the lower four bits display the die revision.

Receive Control Registers

DS21x54 Register:RCR1: Receive Control Register 1DS21x54 Register Address:10 Hex

Bit #	7	6	5	4	3	2	1	0
Name	RSMF	RSM	RSIO	-	-	FRC	SYNCE	RESYNC
55 Abbrv.	IOCR1	IOCR1	IOCR1	-	-	E1RCR1	E1RCR1	E1RCR1
55 Addr.Bit	01.6*	01.5*	01.4	-	-	33.2	33.1	33.0

• RSM, bit 6, has been renamed as RSMS1. There is no new functionality associated with the bit.

• RSDW, bit 7, has been renamed as RSMS2. There is no new functionality associated with the bit.

DS21x54 Register:	RCR2: Receive Control Register 2
DS21x54 Register Address:	11 Hex

Bit #	7	6	5	4	3	2	1	0
Name	Sa8S	Sa7S	Sa6S	Sa5S	Sa4S	RBCS	RESE	-
55 Abbrv.	E1RCR2	E1RCR2	E1RCR2	E1RCR2	E1RCR2	IOCR2	ESCR	-
55 Addr.Bit	34.7	34.6	34.5	34.4	34.3	02.0*	4F.0	-

• RBCS, bit 2, has been renamed as RSCLKM. There is no new functionality associated with the bit.

Transmit Control Registers

DS21x54 Register: TCR1: Transmit Control Register 1 DS21x54 Register Address: 12 Hex

Bit #	7	6	5	4	3	2	1	0
Name	ODF	TFPT	T16S	TUA1	TsiS	TSA1	TSM	TSIO
55 Abbrv.	IOCR1	E1TCR1	E1TCR1	E1TCR1	E1TCR1	E1TCR1	IOCR1	IOCR1
55 Addr.Bit	01.0	35.7	35.6	35.5	35.4	35.3	01.2	01.1

DS21x54 Register:	
DS21x54 Register Address:	

TCR2: Transmit Control Register 2 13 Hex

Bit #	7	6	5	4	3	2	1	0
Name	Sa8S	Sa7S	Sa6S	Sa5S	Sa4S	ODM	AEBE	PF
55 Abbrv.	E1TCR2	E1TCR2	E1TCR2	E1TCR2	E1TCR2	CCR1	E1TCR2	CCR1
55 Addr.Bit	36.7	36.6	36.5	36.4	36.3	70.4	36.2	70.0*

• PF, bit 0, has been renamed as RLOSF. There is no new functionality associated with the bit.

Common Control Registers

DS21x54 Register:	CCR1: Common Control Register 1
DS21x54 Register Address:	14 Hex

Bit #	7	6	5	4	3	2	1	0
Name	FLB	THDB3	TG802	TCRC4	RSM	RHDB3	RG802	RCRC4
55 Abbrv.	LBCR	E1TCR1	E1TCR1	E1TCR1	E1RCR1	E1RCR1	E1RCR1	E1RCR1
55 Addr.Bit	4A.0	35.2	35.1	35.0	33.6*	33.5	33.4	33.3

• RSM, bit 3, has been renamed as RSIGM. There is no new functionality associated with the bit.

DS21x54 Register:	CCR2: Common Control Register 2
DS21x54 Register Address:	1A Hex

Bit #	7	6	5	4	3	2	1	0
Name	ECUS	VCRFS	AAIS	ARA	RSERC	LOTCMC	RFF	RFE
55 Abbrv.	ERCNT	ERCNT	E1TCR2	E1TCR2	E1RCR1	CCR1	SIGCR	SIGCR
55 Addr.Bit	41.5	41.3	36.1	36.0	33.7	See below	40.3	40.4

• LOTCMC, bit 2, has been combined with other functions to simplify the selection of the transmit clock source. The two bits, Transmit Clock Source Select 0 (TCSS0) and Transmit Clock Source Select 1 (TCSS1), are located in the DS2155's Common Control Register 1 (CCR1, address 70 Hex) in bit positions 1 and 2 respectively.

DS21x54 Register:	CCR3: Common Control Register 3
DS21x54 Register Address:	1B Hex

Bit #	7	6	5	4	3	2	1	0
Name	TESE	TCBFS	TIRFS	-	RSRE	THSE	TBCS	RCLA
55 Abbrv.	ESCR	See Below	See below	-	PCPR	PCPR	IOCR2	E1RCR2
55 Addr.Bit	4F.4	See Below	See below	-	28.6*	28.3*	02.1*	34.0

- TBCS, bit 1, has been renamed as TSCLKM. There is no new functionality associated with this bit.
- THSE, bit 2, has been renamed as THSCS. See sections 7 and 17 of the DS2155 data sheet for information on perchannel register operation.
- RSRE, bit 3, has been renamed as RSRCS. See sections 7 and 17 of the DS2155 data sheet for additional information on receive signaling re-insertion.
- Control bit 5, TIRFS, has been incorporated in the new functionality for idle code generation. See section 18 of the DS2155 data sheet for more detail.
- Control bit 6, TCBFS, has been incorporated into the per-channel register operation. See sections 7 and 17 of the DS2155 data sheet for additional information.

DS21x54 Register:	CCR4: Common Control Register 4
DS21x54 Register Address:	A8 Hex

Bit #	7	6	5	4	3	2	1	0
Name	RLB	LLB	LIAIS	TCM4	TCM3	TCM2	TCM1	TCM0
55 Abbrv.	LBCR	LBCR	LIC2	TDS0SEL	TDS0SEL	TDS0SEL	TDS0SEL	TDS0SEL
55 Addr.Bit	4A.2	4A.3	79.4*	74.4	74.3	74.2	74.1	74.0

• LIAIS, bit 1, has been renamed as TUA1. There is no new functionality associated with this bit.

DS21x54 Register:	CCR5: Common Control Register 5
DS21x54 Register Address:	AA Hex

Bit #	7	6	5	4	3	2	1	0
Name	LIRST	RESA	TESA	RCM4	RCM3	RCM2	RCM1	RCM0
55 Abbrv.	LIC2	ESCR	ESCR	RDS0SEL	RDS0SEL	RDS0SEL	RDS0SEL	RDS0SEL
55 Addr.Bit	79.6	4F.3*	4F.7*	76.4	76.3	76.2	76.1	76.0

- TESA, bit 5, has been renamed as TESALGN. There is no new functionality associated with the bit.
- RESA, bit 6, has been renamed as RESALGN. There is no new functionality associated with the bit.

DS21x54 Register:	CCR6: Common Control Register 6
DS21x54 Register Address:	1D Hex

Bit #	7	6	5	4	3	2	1	0
Name	LIUODO	CDIG	LIUSI	-	-	TCLKSRC	RESR	TESR
55 Abbrv.	LIC2	LIC3	LIC3	-	-	CCR1	ESCR	ESCR
55 Addr.Bit	79.0*	7A.0*	7A.2*	-	-	See below	4F.2	4F.6

- TCLKSRC, bit 2, has been combined with other functions to simplify the selection of the source for the transmit clock. Two bits, Transmit Clock Source Select bit 0 (TCSS0) and bit 1 (TCSS1) are located in the DS2155's Common Control Register 1 (CCR1, address 70 Hex) in bit positions 1 and 2 respectively.
- LIUSI, bit 5, has been renamed as RSCLKE. There is no new functionality associated with the bit. However, there is now a TSCLKE control bit available in the DS2155, which controls G.703 support for the transmitter.
- CDIG, bit 6, has been renamed as TAOZ. There is no new functionality associated with the bit.
- LIUODO, bit 7, has been renamed as CLDS. In the DS21x54, this bit determined whether the TTIP and TRING outputs would be open drain or not. In the DS2155, setting this bit to a one will redefine the operation of the transmit line driver. When this bit is set to a one and LIC1.5 = LIC1.6 = LIC1.7 = 0, then the device will generate a square wave at the TTIP and TRING outputs instead of a normal waveform. When this bit is set to a one and LIC1.5 = LIC1.6 = 0 and LIC1.7 = 1, then the device will force TTIP and TRING outputs to become open drain drivers instead of their normal push-pull operation. This bit should be set to zero for normal operation of the DS2155.

Status and Information Registers

DS21x54 Register:	RIR: Receive Information Register
DS21x54 Register Address:	08 Hex

Bit #	7	6	5	4	3	2	1	0
Name	TESF	TESE	JALT	RESF	RESE	CRCRC	FASRC	CASRC
55 Abbrv.	SR5	SR5	SR1	SR5	SR5	INFO3	INFO3	INFO3
55 Addr.Bit	1E.5	1E.4*	16.4	1E.2	1E.1*	12.2	12.1	12.0

• RESE, bit 3, has been renamed as RESEM. There is no new functionality associated with this bit.

• TESE, bit 6, has been renamed as TESEM. There is no new functionality associated with this bit.

DS21x54 Register: SSR: Synchronizer Status Register DS21x54 Register Address: 1E Hex

• The Synchronizer Status Register has been relocated to address 30 Hex in the DS2155.

DS21x54 Register:	SR1: Status Register 1
DS21x54 Register Address:	06 Hex

Bit #	7	6	5	4	3	2	1	0
Name	RSA1	RDMA	RSA0	RSLIP	RUA1	RRA	RCL	RLOS
55 Abbrv.	SR4	SR3	SR4	SR5	SR2	SR3	SR1	SR2
55 Addr.Bit	1C.6	1A.1	1C.5	1E.0	18.2	1A.0	16.3*	18.0

• RCL, bit 1, has been renamed as LRCL. No additional functionality is associated with this bit.

DS21x54 Register:	SR2: Status Register 2
DS21x54 Register Address:	07 Hex

Bit #	7	6	5	4	3	2	1	0
Name	RMF	RAF	TMF	SEC	TAF	LOTC	RCMF	TSLIP
55 Abbrv.	SR4	SR4	SR4	SR1	SR4	SR3	SR4	SR5
55 Addr.Bit	1C.2	1C.0	1C.4	16.6*	1C.3	1A.4	1C.1	1E.3

• SEC, bit 5, has been renamed as TIMER. In the DS21x54, this bit was set on increments of one second (referenced to RCLK). In the DS2155, this bit follows the error counter update interval as determined by the ECUS bit in the Error Counter Configuration Register (ERCNT). In T1 mode, this bit can be configured to set on increments of 1 second or 42ms (referenced to RCLK).

DS21x54 Register:	IMR1: Interrupt Mask Register 1
DS21x54 Register Address:	16 Hex

DC21-54 Designation

Bit #	7	6	5	4	3	2	1	0
Name	RSA1	RDMA	RSA0	RSLIP	RUA1	RRA	RCL	RLOS
55 Abbrv.	IMR4	IMR3	IMR4	IMR5	IMR2	IMR3	IMR1	IMR2
55 Addr.Bit	1D.6	1B.1	1D.5	1F.0	19.2	1B.0	17.3*	19.0

• RCL, bit 1, has been renamed as LRCL. No additional functionality is associated with this bit.

DS21x54 Reg DS21x54 Reg			nterrupt Mas	k Register 2				
Bit #	7	6	5	4	3	2	1	0
Name	RMF	RAF	TMF	SEC	TAF	LOTC	RCMF	TSLIP
55 Abbrv.	IMR4	IMR4	IMR4	IMR1	IMR4	IMR3	IMR4	IMR5
55 Addr.Bit	1D.2	1D.0	1D.4	17.6*	1D.3	1B.4	1D.1	1F.3

• SEC, bit 5, has been renamed as TIMER. In the DS21x54, this bit enabled the interrupt on increments of one second (referenced to RCLK). In the DS2155, this bit follows the error counter update interval as determined by the ECUS bit in the Error Counter Configuration Register (ERCNT). In T1 mode, this bit can be configured to interrupt on increments of 1 second or 42ms (referenced to RCLK).

Error Count Registers

The error count registers have been kept intact, but have been relocated. In addition, all of the count registers are now 16-bit registers because the registers that were shared in the DS21x54 are no longer shared in the DS2155. See section 15 in the DS2155 data sheet for additional information on the error count registers.

DS21x54 Registers:	VCR1, VCR2: Bipolar Violation Count Register 1 & 2
DS21x54 Register Address:	00, 01 Hex
DS21x54 Registers:	CRCCR1, CRCCR2: CRC4 Count Register 1 & 2
DS21x54 Register Address:	02 Hex (Same as FASCR1), 03 Hex
DS21x54 Register:	FASCR1, FASCR2: FAS Error Count Register 1 & 2
DS21x54 Register Address:	02 Hex (Same as CRCCR1), 04 Hex (Same as EBCR1)
DS21x54 Register:	EBCR1, EBCR2: E-Bit Count Register 1 & 2
DS21x54 Register Address:	04 Hex (Same as FASCR2), 05 Hex

DS21x54 Register	DS21x54 Register Abbreviation	DS2155 Register Abbreviation	DS2155 Address (Hex)
Bipolar Violation Count Register 1	VCR1 (00Hex)	LCVCR1	42
Bipolar Violation Count Register 2	VCR2 (01 Hex)	LCVCR2	43
CRC4 Count Register 1	CRCCR1 (02 Hex)*	PCVCR1	44
CRC4 Count Register 1	CRCCR2 (03 Hex)	PCVCR2	45
FAS Error Count Register 1	FASCR1 (02 Hex)*	FOSCR1	46
FAS Error Count Register 2	FASCR2 (04 Hex)*	FOSCR2	47
E-Bit Error Count Register 1	EBCR1 (04 Hex)*	EBCR2	48
E-Bit Error Count Register 2	EBCR2 (05 Hex)	EBCR2	49

- In the DS21x54, CRCCR1 and FASCR1 shared the count register located at address 02 Hex. The two error counters no longer share a register in the DS2155.
- Additionally, FASCR2 and EBCR1 shared the count register located at address 04 Hex. These two error counters no longer share a register in the DS2155.

DS0 Monitoring Function Registers

Both the Transmit DS0 Monitor Register and Receive DS0 Monitor Register has been relocated to a new address.

DS21x54 Register:	TDS0M: Transmit DS0 Monitor Register
DS21x54 Register Address:	A9 Hex

DS21x54 Register: RDS0M: Receive DS0 Monitor Register DS21x54 Register Address: AB Hex

DS21x54 Register	DS21x54 Register Abbreviation	DS2155 Register Abbreviation	DS2155 Address (Hex)	
Transmit DS0 Monitor Register	TDS0M (A9 Hex)	TDS0M	75	
Receive DS0 Monitor Register	RDS0M (AB Hex)	RDS0M	77	

Signaling Registers

The Transmit Signaling Registers and Receive Signaling Registers have been relocated to 50-5F Hex and 60-6F Hex, respectively. Additionally, the signaling information contained in the signaling registers has been rearranged. See section 17 of the DS2155 data sheet for additional information on signaling operation.

DS21x54 Register:RS1 to RS16: Receive Signaling RegistersDS21x54 Register Address:30 to 3F Hex

- The Receive signaling registers have been relocated to 60-6F Hex
- The following table shows the new the arrangement for the Receive Signaling Registers.

(MSB)							(LSB)	Register Name	DS2155 Address
CH2-A	CH2-B	CH2-C	CH2-D	CH1-A	CH1-B	CH1-C	CH1-D	RS1	60
CH4-A	CH4-B	CH4-C	CH4-D	CH3-A	CH3-B	CH3-C	CH3-D	RS2	61
CH6-A	CH6-B	CH6-C	CH6-D	CH5-A	CH5-B	CH5-C	CH5-D	RS3	62
CH8-A	CH8-B	CH8-C	CH8-D	CH7-A	CH7-B	CH7-C	CH7-D	RS4	63
CH10-A	CH10-B	CH10-C	CH10-D	CH9-A	CH9-B	CH9-C	CH9-D	RS5	64
CH12-A	CH12-B	CH12-C	CH12-D	CH11-A	CH11-B	CH11-C	CH11-D	RS6	65
CH14-A	CH14-B	CH14-C	CH14-D	CH13-A	СН13-В	CH13-C	CH13-D	RS7	66
CH16-A	CH16-B	CH16-C	CH16-D	CH15-A	CH15-B	CH15-C	CH15-D	RS8	67
CH18-A	CH18-B	CH18-C	CH18-D	CH17-A	СН17-В	CH17-C	CH17-D	RS9	68
CH20-A	CH20-B	СН20-С	CH20-D	CH19-A	СН19-В	CH19-C	CH19-D	RS10	69
CH22-A	CH22-B	СН22-С	CH22-D	CH21-A	CH21-B	CH21-C	CH21-D	RS11	6A
CH24-A	CH24-B	CH24-C	CH24-D	CH23-A	СН23-В	СН23-С	CH23-D	RS12	6B
CH26-A	CH26-B	СН26-С	CH26-D	CH25-A	CH25-B	СН25-С	CH25-D	RS13	6C
CH28-A	CH28-B	CH28-C	CH28-D	CH27-A	CH27-B	СН27-С	CH27-D	RS14	6D
CH30-A	СН30-В	СН30-С	CH30-D	CH29-A	СН29-В	СН29-С	CH29-D	RS15	6E
CH32-A	СН32-В	СН32-С	CH32-D	CH31-A	CH31-B	CH31-C	CH31-D	RS16	6F

DS21x54 Register:	TS1 to TS16: Transmit Signaling Registers
DS21x54 Register Address:	40 to 4F Hex

- Transmit Signaling Registers 1 through 16 can be found at addresses 50 Hex through 5F Hex.
- In E1 mode, TS16 carries the signaling information. This information can be in either CCS (Common Channel Signaling) or CAS (Channel Associated Signaling) format. The 32 time slots are referenced by two different channel number schemes in E1. In "Channel" numbering, TS0 through TS31 are labeled channels 1 through 32. In "Phone Channel" numbering TS1 through TS15 are labeled channel 1 through channel 15 and TS17 through TS31 are labeled channel 15 through channel 30. See table 17-1 in the DS2155 for more information.
- The following tables show the new the arrangement for the Transmit Signaling Registers for CAS and CCS formats.

TRANSMIT SIGNALING REGISTERS (E1 MODE, CAS FORMAT)

(MSB)						,	(LSB)	Register	DS2155 Address
0	0	0	0	Х	Y	Х	Х	TS1	50
CH2-A	CH2-B	CH2-C	CH2-D	CH1-A	CH1-B	CH1-C	CH1-D	TS2	51
CH4-A	CH4-B	CH4-C	CH4-D	CH3-A	CH3-B	CH3-C	CH3-D	TS3	52
CH6-A	CH6-B	CH6-C	CH6-D	CH5-A	CH5-B	CH5-C	CH5-D	TS4	53
CH8-A	CH8-B	CH8-C	CH8-D	CH7-A	CH7-B	CH7-C	CH7-D	TS5	54
CH10-A	CH10-B	CH10-C	CH10-D	CH9-A	CH9-B	CH9-C	CH9-D	TS6	55
CH12-A	CH12-B	CH12-C	CH12-D	CH11-A	CH11-B	CH11-C	CH11-D	TS7	56
CH14-A	CH14-B	CH14-C	CH14-D	CH13-A	СН13-В	СН13-С	CH13-D	TS8	57
CH16-A	CH16-B	CH16-C	CH16-D	CH15-A	CH15-B	CH15-C	CH15-D	TS9	58
CH18-A	CH18-B	CH18-C	CH18-D	CH17-A	CH17-B	СН17-С	CH17-D	TS10	59
CH20-A	CH20-B	СН20-С	CH20-D	CH19-A	CH19-B	СН19-С	CH19-D	TS11	5A
CH22-A	СН22-В	СН22-С	CH22-D	CH21-A	CH21-B	CH21-C	CH21-D	TS12	5B
CH24-A	CH24-B	CH24-C	CH24-D	CH23-A	СН23-В	СН23-С	CH23-D	TS13	5C
CH26-A	CH26-B	СН26-С	CH26-D	CH25-A	CH25-B	СН25-С	CH25-D	TS14	5D
CH28-A	CH28-B	CH28-C	CH28-D	СН27-А	СН27-В	СН27-С	CH27-D	TS15	5E
CH30-A	СН30-В	СН30-С	CH30-D	СН29-А	СН29-В	СН29-С	CH29-D	TS16	5F

TRANSMIT SIGNALING REGISTERS (E1 MODE, CCS FORMAT)

(MSB)							(LSB)	Register	DS2155 Address
1	2	3	4	5	6	7	8	TS1	50
17	18	19	20	9	10	11	12	TS2	51
33	34	35	36	25	26	27	28	TS3	52
49	50	51	52	41	42	43	44	TS4	53
65	66	67	68	57	58	59	60	TS5	54
81	82	83	84	73	74	75	76	TS6	55
97	98	99	100	89	90	91	92	TS7	56
113	114	115	116	105	106	107	108	TS8	57
13	14	15	16	121	122	123	124	TS9	58
29	30	31	32	21	22	23	24	TS10	59
45	46	47	48	37	38	39	40	TS11	5A
61	62	63	64	53	54	55	56	TS12	5B
77	78	89	80	69	70	71	72	TS13	5C
93	94	95	96	85	86	87	88	TS14	5D
109	110	111	112	101	102	103	104	TS15	5E
125	126	127	128	117	118	119	120	TS16	5F

Per-Channel Code Generation Registers

The method for generating idle codes has changed in the DS2155. The DS2155 contains a 64-byte Idle Code Array accessed by the Idle Array Address Register (IAAR) and the Per-Channel Idle Code Register (PCICR). The contents of the array contain the idle codes to be substituted into the appropriate transmit or receive channels. This substitution can be enabled and disabled on a per-channel basis by the Transmit Channel Idle Code Enable registers (TCICE1-4) and Receive Channel Idle Code Enable registers (RCICE1-4). The following table gives the DS2155 register that closely resembles the corresponding DS21x54 register. See section 18 of the DS2155 for additional information on per-channel idle code generation.

DS21x54 Register:	TIR1, TIR2, TIR3, TIR4: Transmit Idle Registers 1, 2, 3, 4
DS21x54 Register Address:	26, 27, 28 , 29 Hex
DS21x54 Register:	TIDR: Transmit Idle Definition Register
DS21x54 Register Address:	2A Hex
DS21x54 Register:	TC1 to TC32: Transmit Channel Registers
DS21x54 Register Address:	60 to 7F Hex
DS21x54 Register:	TCC1, TCC2, TCC3, TCC4: Transmit Channel Control Registers 1-4
DS21x54 Register Address:	A0, A1, A2, A3 Hex
DS21x54 Register:	RC1 to RC32: Receive Channel Registers
DS21x54 Register Address:	80 to 9F Hex
DS21x54 Register:	RCC1, RCC2, RCC3, RCC4: Receive Channel Control Registers
DS21x54 Register Address:	A4, A5, A6, A7 Hex

DS21x54 Register	DS21x54 Register Abbreviation	DS2155 Register Abbreviation	DS2155 Address (Hex)
Transmit Idle Register 1	TIR1 (26 Hex)	TCICE1	80
Transmit Idle Register 2	TIR2 (27 Hex)	TCICE2	81
Transmit Idle Register 3	TIR3 (28 Hex)	TCICE3	82
Transmit Idle Register 4	TIR4 (29 Hex)	TCICE4	83
Transmit Idle Definition Register	TIDR (7F Hex)	PCICR	7F
Transmit Channel Control Register 1	TCC1 (A0 Hex)	PCDR1	29
Transmit Channel Control Register 2	TCC2 (A1 Hex)	PCDR2	2A
Transmit Channel Control Register 3	TCC3 (A2 Hex)	PCDR3	2B
Transmit Channel Control Register 4	TCC4 (A3 Hex)	PCDR4	2C
Transmit Channel Registers 1 to 32	TC1 to TC32	*	*
Receive Channel Registers 1 to 32	RC1 to RC32	*	*
Receive Channel Control Registers 1-4	RCC1 to RCC3	*	*

• TC1 to TC32, RC1 to RC32, and RCC1 to RCC4 have been incorporated in the new functionality of the per-channel idle code generation. See section 18 of the DS2155 data sheet for more detail.

Channel Blocking Registers

DS21x54 Register:

DS21x54 Register Address:

DS21x54 Register:RCBR1, RCBR2, RCBR3, RCBR4: Receive Channel Block RegistersDS21x54 Register Address:2B, 2C, 2D, 2E Hex

TCBR1, TCBR2, TCBR3, TCBR4: Transmit Channel Block Registers 22, 23, 24, 25 Hex

DS21x54 Register	DS21x54 Register Abbreviation	DS2155 Register Abbreviation	DS2155 Address (Hex)
Receive Channel Block Register 1	RCBR1 (2B Hex)	RCBR1	88
Receive Channel Block Register 2	RCBR2 (2C Hex)	RCBR2	89
Receive Channel Block Register 3	RCBR3 (2D Hex)	RCBR3	8A
Receive Channel Block Register 4	RCBR4 (2E Hex)	RCBR4	8B
Transmit Channel Block Register 1	TCBR1 (22 Hex)	TCBR1	8C
Transmit Channel Block Register 2	TCBR2 (23 Hex)	TCBR2	8D
Transmit Channel Block Register 3	TCBR3 (24 Hex)	TCBR3	8E
Transmit Channel Block Register 4	TCBR4 (25 Hex)	TCBR4	8F

Additional (Sa) and International (Si) Bit Operation Registers

DS21x54 Register	DS21x54 Register Abbreviation	DS2155 Register Abbreviation	DS2155 Address (Hex)
Receive Align Frame Register	RAF (2F Hex)	RAF	C6
Receive Non-Align Frame Register	RNAF (1F Hex)	RNAF	C7
Transmit Align Frame Register	TAF (20 Hex)	TAF	D0
Transmit Non-Align Frame Register	TNAF (21 Hex)	TNAF	D1
Receive Si-Bits Align Frame	RSiAF (58 Hex)	RSiAF	C8
Receive Si-Bits Non-Align Frame	RSiNAF (59 Hex)	RSiNAF	С9
Receive Remote Alarm Register	RRA (5A Hex)	RRA	CA
Receive Sa4 Register	RSa4 (5B Hex)	RSa4	CB
Receive Sa5 Register	RSa5 (5C Hex)	RSa5	CC
Receive Sa6 Register	RSa6 (5D Hex)	RSa6	CD
Receive Sa7 Register	RSa7 (5E Hex)	RSa7	CE
Receive Sa8 Register	RSa8 (5F Hex)	RSa8	CF
Transmit Si-Bits Align Frame	TsiAF (50 Hex)	TsiAF	D2
Transmit Si-Bits Non-Align Frame	TsiNAF (51 Hex)	TsiNAF	D3
Transmit Remote Alarm Register	TRA (52 Hex)	TRA	D4
Transmit Sa4 Register	TSa4 (53 Hex)	TSa4	D5
Transmit Sa5 Register	TSa5 (54 Hex)	TSa5	D6
Transmit Sa6 Register	TSa6 (55 Hex)	TSa6	D7
Transmit Sa7 Register	TSa7 (56 Hex)	TSa7	D8
Transmit Sa8 Register	TSa8 (57 Hex)	TSa8	D9
Transmit Sa Bit Control Register	TSaCR (1C Hex)	TSaCR	DA

HDLC Registers

While the DS21x54 has only one HDLC controller, the DS2155 has two enhanced HDLCs. Each controller is configurable for use with time slots, or Sa4 to Sa8 bits (E1 Mode) or the FDL (T1 Mode). The transmit and receive path buffers in the DS2155 have been doubled to 128-bytes. When used with time slots, the user can select any time slot or multiple time slots, contiguous or non-contiguous, as well as any specific bits within the time slot(s) to assign to the HDLC controllers.

The HDLC controller performs the necessary overhead for generating and receiving Performance Report Messages (PRM) as described in ANSI T1.403 and the messages as described in AT&T TR54016. The HDLC controller automatically generates and detects flags, generates and checks the CRC check sum, generates and detects abort sequences, stuffs and de-stuffs zeros, and byte aligns to the data stream. The 128–byte buffers in the HDLC controller are large enough to allow a full PRM to be received or transmitted without host intervention.

The user must take care to not map both transmit HDLC controllers to the same Sa bits, time slots or, in T1 mode, map both controllers to the FDL. HDLC #1 and HDLC #2 are identical in operation and therefore, when applicable, each DS21x52 register bit will be mapped to two addresses.

DS21x54 Register: HCR: HDLC Control Register DS21x54 Register Address: B0 Hex

Bit #	7	6	5	4	3	2	1	0
Name	-	RHR	TFS	THR	TABT	TEOM	TZSD	TCRCD
55 Abbrv.	-	HxRC*	HxTC*	HxTC*	HxTC*	HxTC*	HxTC*	HxTC*
55 Addr.Bit	-	31.7 32.7	90.3 A0.3	90.5 A0.5	See below	90.2 A0.2	90.1 A0.1	90.0 A0.0

- HxTC refers to H1TC and H2TC located at addresses 90 Hex and A0 Hex respectively.
- HxRC refers to H1RC and H2RC located at addresses 31 Hex and 32 Hex respectively.

• TABT, bit 3, has been incorporated into the Transmit HDLC Reset (THR) bit.

DS21x54 Register:	HSR: HDLC Status Register
DS21x54 Register Address:	B1 Hex

Bit #	7	6	5	4	3	2	1	0
Name	FRCL	RPE	RPS	RHALF	RNE	THALF	TNF	TMEND
55 Abbrv.	SR2	SR6 SR7	SR6 SR7	SR6 SR7	SR6 SR7	SR6 SR7	SR6 SR7	SR6 SR7
55 Addr.Bit	18.1	20.5 22.5	20.4 22.4	20.3* 22.3*	20.2 22.2	20.1* 22.1*	20.0 22.0	20.6 22.6

- The status bits for HDLC #1 have been mapped to Status Register 6 (SR6) in the DS2155.
- The status bits for HDLC #2 have been mapped to Status Register 7 (SR7) in the DS2155.
- THALF, bit 2, has been renamed to TLWM. In the DS21x54, THALF is set when the transmit 64-byte FIFO empties beyond the halfway point. For the DS2155, the TLWM bit will be set when the transmit 128-byte FIFO empties beyond the low water mark as defined by the TFLWM0-TFLWM2 bits located in the FIFO control register (H1FC, H2FC). The low water mark is programmable to one of 8 different levels.
- RHALF, bit 4, has been renamed to RHWM. In the DS21x54, RHALF is set when the receive 64-byte FIFO fills beyond the halfway point. For the DS2155, the RHWM bit will be set when the receive 128-byte FIFO fills beyond the high water mark as defined by the RFHWM0-RFHWM2 bits located in the FIFO control register (H1FC, H2FC). The high water mark is programmable to one of 8 different levels.

DS21x54 Register:	HIMR: HDLC Interrupt Mask Register
DS21x54 Register Address:	B2 Hex

Bit #	7	6	5	4	3	2	1	0
Name	FRCL	RPE	RPS	RHALF	RNE	THALF	TNF	TMEND
55 Abbrv.	IMR2	IMR6	IMR6	IMR6	IMR6	IMR6	IMR6	IMR6
	IIVIK2	IMR7	IMR7	IMR7	IMR7	IMR7	IMR7	IMR7
55 Addr.Bit	19.1	21.5 23.5	21.4 23.4	21.3*	21 2 22 2	21.1*	21.0.22.0	21.6 23.6
	19.1	21.3 23.3	21.4 23.4	23.3*	21.2 23.2	23.1*	21.0 23.0	21.0 25.0

• The interrupt mask bits for HDLC #1 have been mapped to HDLC Interrupt Mask Register 6 (IMR6) in the DS2155.

• The interrupt mask bits for HDLC #2 have been mapped to HDLC Interrupt Mask Register 7 (IMR7) in the DS2155.

• THALF, bit 2, has been renamed to TLWM. When THALF is enabled in the DS21x54, the device will generate an interrupt when the transmit 64-byte FIFO empties beyond the halfway point. For the DS2155, the device will generate an interrupt, if TLWM is enabled, when the transmit 128-byte FIFO empties beyond the low water mark as defined by the TFLWM0-TFLWM2 bits located in the FIFO control register (H1FC, H2FC). The low water mark is programmable to one of 8 different levels.

• RHALF, bit 4, has been renamed to RLWM. When RHALF is enabled in the DS21x54, the device will generate an interrupt when the receive 64-byte FIFO fills beyond the halfway point. For the DS2155, the device will generate an interrupt, if RHWM is enabled, when the receive 128-byte FIFO fills beyond the high water mark as defined by the RFHWM0-RFHWM2 bits located in the FIFO control register (H1FC, H2FC). The high water mark is programmable to one of 8 different levels.

DS21x54 Register:	RHIR: Receive HDLC Information Register
DS21x54 Register Address:	B3 Hex

Bit #	7	6	5	4	3	2	1	0
Name	RABT	RCRCE	ROVR	RVM	REMPTY	POK	CBYTE	OBYTE
55 Abbrv.	INFO5 INFO6	INFO5 INFO6	INFO5 INFO6	INFO5 INFO6	INFO5 INFO6	INFO5 INFO6	HxRPBA*	INFO4*
55 Addr.Bit	See below	See below	See below	See below	2E.3 2F.3	See below	9C.7* AC.7*	#1 2D.0* #2 2D.2*

• The HDLC information bits for HDLC #1 have been mapped to the Receive HDLC #1 Information Register, INFO5.

• The HDLC information bits for HDLC #2 have been mapped to the Receive HDLC #2 Information Register, INFO6.

• OBYTE, bit 0, is renamed as H1OBT for HDLC #1 and H2OBT for HDLC #2. Both H1OBT & H2OBT can be found in the HDLC Event Information Register (INFO4, address 2D Hex). There is no new functionality associated with this bit.

• HxRPBA refers to H1RPBA and H2RPBA, located at addresses 9C Hex and AC Hex respectively.

- CBYTE, bit 1, has been renamed as MS. Unlike the operation of the CBYTE bit in the DS21x52, the MS bit will be low when the byte available for reading the receive FIFO is the last byte of a message. MS will be high when the byte available for reading is the first byte of the continuation of a message.
- POK, bit 2, has been incorporated into the Receive Packet Status bits (PS0-PS2) located in INFO5 and INFO6.

• RVM, bit 4, has been incorporated into the Receive Packet Status bits (PS0-PS2) located in INFO5 and INFO6.

• ROVR, bit 5, has been incorporated into the Receive Packet Status bits (PS0-PS2) located in INFO5 and INFO6.

- RCRCE, bit 6, has been incorporated into the Receive Packet Status bits (PS0-PS2) located in INFO5 and INFO6.
- RABT, bit 7, has been incorporated into the Receive Packet Status bits (PS0-PS2) located in INFO5 and INFO6.

DS21x54 Register: RHFR: Receive HDLC FIFO Register DS21x54 Register Address: B4 Hex

- The Receive HDLC FIFO Register has been relocated to address 9E Hex for HDLC #1 and AE Hex for HDLC #2.
- The lower 7 bits of the Receive Packet Bytes Available registers (H1RPBA, H2RPBA) indicate the number of bytes that can be read from the receive FIFO. The value indicated by the lower seven bits in these registers informs the host as to how many bytes can be read from the receive FIFO without going past the end of a message. This value will refer to one of four possibilities, the first part of a packet, the continuation of a packet, the last part of a packet, or a complete packet. After reading the number of bytes indicated by this register the host then checks the HDLC Information register for detailed message status. See section 24.4.2 of the DS2155 data sheet for additional information.

DS21x54 Register:	THIR: Transmit HDLC Information Register
DS21x54 Register Address:	B6 Hex

Bit #	7	6	5	4	3	2	1	0
Name	-	-	-	-	-	TEMPTY	TFULL	TUDR
55 Abbrv.						INFO5	INFO5	INFO4*
	-	-	-	-	-	INFO6	INFO6	INFO4 ⁺
55 Addr.Bit						2E.5 2F.5	2E.4 2F.4	#1 2D.1*
	-	-	-	-	-	2E.3 2F.3	2E.4 2F.4	#2 2D.3*

• TUDR, bit 0, is renamed as H1UDR for HDLC #1 and H2UDR for HDLC #2. Both H1UDR & H2UDR can be found in the HDLC Event Information Register (INFO4, address 2D Hex). There is no new functionality associated with this bit.

DS21x54 Register:	THFR: Transmit HDLC FIFO
DS21x54 Register Address:	B7 Hex

- The Transmit HDLC FIFO Register has been relocated to address 9D Hex for HDLC #1 and AD Hex for HDLC #2.
- The Transmit FIFO Buffer Available registers (H1TFBA, H2TFBA) indicate the number of bytes that can be written into the transmit FIFOs. The count from this register informs the host as to how many bytes can be written into the transmit FIFO without overflowing the buffer

DS21x54 Register:	RDC1: Receive HDLC DS0 Control Register 1
DS21x54 Register Address:	B8 Hex

Bit #	7	6	5	4	3	2	1	0
Name	RHS	RSaDS	RDS0M	RD4	RD3	RD2	RD1	RD0
55 Abbrv.	See below	HxRC*	See below					
55 Addr.Bit	See below	31.6* 32.6*	See below					

- RD0 through RD4, bits 0 to 4, RDS0M, bit 5, and RHS, bit 7, have been replaced by registers H1RCS1 to H1RCS4 for HDLC #1 and H2RCS1 to H2RCS4 for HDLC #2. Any channel or combination of channels, contiguous or not, can be assigned to an HDLC controller. When assigned to a channel(s) any combination of bits within the channel(s) can be avoided. See section 24.3 of the DS2155 for additional information on mapping the HDLC data to channels.
- HxRC refers to H1RC and H2RC located at addresses 31 Hex and 32 Hex respectively.
- RSaDS, bit 6, has been replaced by RHMS. See section 24.3 of the DS2155 data sheet for additional information on mapping the receive data The mapping of HDLC data to Sa bits The operation of this bit is inverted from that of the DS21x52. See section 24 of the DS2155 for additional information on mapping the HDLC data to channels or Sa bits.

DS21x54 Register:RDC2: Receive HDLC DS0 Control Register 2DS21x54 Register Address:B9 Hex

• Receive HDLC DS0 Control Register 2 has been relocated to 96 Hex for HDLC #1 and A6 Hex for HDLC #2.

DS21x54 Register:	TDC1: Transmit HDLC DS0 Control Register 1
DS21x54 Register Address:	BA Hex

Bit #	7	6	5	4	3	2	1	0
Name	THE	TSaDS	TDS0M	TD4	TD3	TD2	TD1	TD0
55 Abbrv.	See below	HxTC	See below					
55 Addr.Bit	See below	90.4* A0.4*	See below					

- TD0 through TD4, bits 0 to 4, and TDS0M, bit 5, have been replaced by registers H1TCS1 to H1TCS4 for HDLC #1 and H2TCS1 to H2TCS4 for HDLC #2. Any channel or combination of channels, contiguous or not, can be assigned to an HDLC controller. When assigned to a channel(s) any combination of bits within the channel(s) can be avoided. See section 24.3 of the DS2155 for additional information on mapping the HDLC data to channels.
- HxTC refers to H1TC and H2TC located at addresses 90 Hex and A0 Hex respectively.
- TSaDS, bit 6, has been renamed to THMS. The operation of this bit is inverted from that of the DS21x54. See section 24 of the DS2155 for additional information.
- THE, bit 7, has been incorporated into the DS2155 via the TFDLS bit in register T1TCR1. Also, see section 24 for additional information on configuring the 2 HDLCs.

DS21x54 Register:	TDC2: Transmit HDLC DS0 Control Register 2
DS21x54 Register Address:	BB Hex

• Transmit HDLC DS0 Control Register 2 has been relocated to 9B Hex for HDLC #1 and AB Hex for HDLC #2.

Line Interface Control Register

DS21x54 Register:LICR: Line Interface Control RegisterDS21x54 Register Address:7C Hex

• The Line Interface Control Register has been relocated to 78 Hex. The DS2155 data sheet refers to the register as Line Interface Control 1 (LIC1).

Interleaved PCM Bus Operation Register

The interleave bus operation has been converted to full software control in the DS2155 and the external pins associated with this option have been reassigned to the extended system information bus function. See section 29 for more detail on the interleaved PCM bus operation.

DS21x54 Register:	IBO: Interleaved Bus Operation Register
DS21x54 Register Address:	B5 Hex

Bit #	7	6	5	4	3	2	1	0
Name	-	-	-	-	IBOEN	INTSEL	MSEL0	MSEL1
55 Abbrv.	-	-	-	-	IBOC	IBOC	See below	See below
55 Addr.Bit	-	-	-	-	C5.3	C5.4*	See below	See below

- MSEL0 and MSEL1 are not included in the DS2155.
- INTSEL, bit 2, has been renamed IBOSEL. There is no new functionality associated with this control bit.

4) New DS2155 Features

The DS2155 contains all of the features found in the previous generations of Dallas Semiconductor's SCTs plus many more. Some additional features are subtle changes while others are new additions. The scope of this paper is to identify some of the new features that the DS2155 offers without getting into the specifics that are outlined in the DS2155 data sheet.

4.1 Key Additional Features in the DS2155

The follow is a list of some of the new features in the DS2155. See the DS2155 for additional information.

• Line Interface

- Requires only a 2.048 MHz master clock for both E1 and T1 operation with an option to use a 1.544 MHz master clock for T1 operation.
- Receive level indication in 2.5dB steps from -42.5dB to -2.5dB.
- ▶ Internal receive termination option for 75, 100, and 120 ohm lines.
- Square wave output.
- > Transmitter 50mA short circuit limiter with current limit exceeded indication.
- > Transmit open circuit detected indication.
- Code Mark Inversion option.

• Clock Synthesizer

Output frequency includes 16.384 MHz option.

• Jitter Attenuator

Requires only a 2.048 MHz master clock for both E1 and T1 operation with an option to use a 1.544 MHz master clock for T1 operation.

• Framer/Formatter

- ➢ RAI-CI detection and generation.
- > AIS-CI detection and generation.
- E1 ETS 300 011 RAI generation.
- ► G.965 V5.2 link detection.
- > In-band repeating pattern generators and detectors support up to 16-bits in length.
- > Hardware pins added to indicate carrier loss and signaling freeze.
- > Option to extend carrier loss criteria to a 1ms period as per ETS 300 233.
- > Additional events capable of generating interrupts.

• System Interface

Maximum backplane burst rate increased to 16.384 MHz.

• HDLC

- ➤ Two independent HDLCs.
- > Fast load and unload features for the FIFOs.
- > SS7 support for FISU transmit and receive.
- > Transmit and receive buffers increased to 128-bytes.
- Programmable fill levels for transmit and receive buffers.

• Test and Diagnostics

- Programmable On-chip Bit Error Rate Testing.
- Pseudorandom patterns including QRSS.
- Daly pattern.
- Error insertion single and continuos.
- Total bit and errored bit counts.
- Payload Error Insertion.
- Error insertion in the payload portion of the T1 frame in the transmit path.
- Errors can be inserted over the entire frame or selected channels.
- > Insertion options include continuous and absolute number with selectable insertion rates.
- ➢ F-Bit corruption for line testing.

• Extended System Information Bus

Allows the host to read interrupt and alarm status on up to 8 ports with a single bus read. See section 4.2.3 of this note and section 30 of the DS2155 data sheet for more information.

• User Programmable Output Pins

➢ Four user defined output pins for controlling external logic.

• Control Port

- Software reset supported.
- Flexible register space resets.

4.2 High Throughput Features in the DS2155

In addition to the features listed above, the DS2155 has several features designed to improve throughput efficiency and provide overhead relief for the host processor. The following sections give a brief overview of new features; however, please refer to the DS2155 data sheet for detailed information on each of these features.

4.2.1 Bytes Available (HDLC Controller)

The transmit and receive portion of the HDLC controllers have improved throughput features. All of these features allow the host to read and write BLOCKS of data without having to check status bits on a per-byte basis.

- 1. **Transmit Bytes Buffer Available registers (Address 9Fh & AFh):** The host can read this register to see how many bytes can be written into the transmit FIFO without over flowing the FIFO. The transmit FIFO can contain multiple messages. Also there are programmable low water marks on the transmit FIFO (this replaces the Haft Empty flag).
- 2. Receive Packets Bytes Available registers (Address 9Ch & ACh): The host can read this register to determine how many bytes can be read from the receive FIFO without under flowing the buffer or reading past the end of a message. Also there are programmable high water marks on the receive FIFOs.

4.2.2 SS7 Support (HDLC Controller)

Both the transmit and receive portions of the HDLC controllers have features that improve support for SS7.

- 1. **Transmit FIFO Loop control.** The transmitter has a loop feature that allows it to loop on a message in the transmit FIFO. For SS7 FISUs (Fill In Signal Units) the host only needs to write the FISU (containing the last FSN and BSN values of the last regular message unit) once. The transmitter can then repeat the FISU without host intervention until a normal message unit is ready to be transmitted.
- 2. **Receive Consecutive FISU Detect and Delete.** On the receive side, the controller will recognize a Fill In Signal Unit by its length. If the CRC is correct, and the BSN is a repeat of the last signal unit's BSN the controller will disregard the FISU without host intervention. Erred FISUs will be reported to the host.

4.2.3 Extended System Information Bus (ESIB)

The ESIB allows up to eight DS2155s to share an 8 bit CPU bus for the purpose of reporting alarm in interrupt status as a group. With a single bus read, the host can be updated with alarm or interrupt status from all eight devices. There are four registers, ESI0, ESI1, ESI2 and ESI4. As an example, 8 DS2155s can be grouped into an ESIB group. A single read of the ESI0 register of ANY member of the group will yield the interrupt status of all 8 DS2155s. Therefore the host can determine which device or devices are causing an interrupt without polling all eight devices. Via ESI1 the host can gather synchronization status on all members of the group. ESI2 and ESI4 can be programmed to report various alarms on a device by device basis.

5) Hardware Considerations: DS2155 vs. DS21x5y

The DS2155 is pin compatible with existing DS21x5y devices. This section addresses two scenarios. Scenario #1 involves placing a DS2155 into an existing DS21x5y design. In this situation, some of the new features of the DS2155 will be unavailable; however, all of the DS21x5y functionality is available. Scenario # 2 involves generating a new design based on the DS21x5y but allowing for migration to the DS2155 when available and making use of the new features. Table 1 shows a summary of the pin changes.

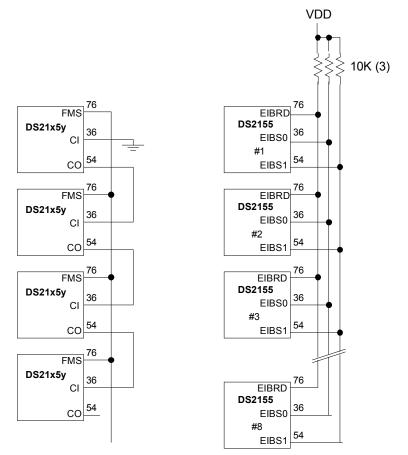

PIN	DS21x5y	DS2155	Comment
3	8MCLK	BPCLK	This pin is now programmable to 4.096, 8.192 or 16.384MHz
8	NC	UOP0	Bit 0 of a four bit user port
9	NC	UOP1	Bit 1 of a four bit user port
14	TEST	TSTRST	This pin will now force a register reset when high along with
			forcing all outputs and I/O pins into high Z.
15	NC	UOP2	Bit 2 of a four bit user port
23	NC	UOP3	Bit 3 of a four bit user port
76	FMS	ESIBRD	FMS deleted and pin reused for ESIB
36	CI	ESIBS0	CI function now controlled via software. Pin used for ESIB
54	CO	ESIBS1	CO function now controlled via software. Pin used for ESIB
26	NC	NC	Must remain a No Connect
27	NC	NC	Must remain a No Connect
28	NC	NC	Must remain a No Connect

Table 1: Summary of Pin Changes

5.1 REASSIGNED PIN FUNCTIONS FOR PINS 36, 54, AND 76

The Interleave Bus Option (IBO) has been converted to full software control in the DS2155 and the pins (CO, CI) reassigned to the ESIB function. These pins plus FMS are now used for a new feature (Extended System Information Bus). In this application, up to 4 SCTs can share a single, higher speed PCM bus as shown in Figure 1a. The CO and CI signals were used to establish the master/slave relationship of the devices. In the DS2155 this relationship is software configurable and the CO/CI pin function is deleted. In the DS2155 these pins have been used for another function, the ESIB as shown in Figure 1b. In addition, the FMS pin function has been deleted and replaced with a new signal to support the ESIB.

Figure 1. PINS 36, 54 AND 76 USAGE

1a. Interleave Bus Option

1b. ESIB feature

Scenario #1

When the DS2155 is used in an existing DS21x5y design the ESIB must not be enabled. In this case, pins 36, 54 and 76 enter a high Z state and are therefore not affected by existing CO/CI connections. When using the DS2155 in an existing DS21x5y design the IBOs hierarchy is configured via software. The ESIB function of the DS2155 is not available in this situation.

Scenario #2

When provisioning a new DS21x5y design to accept the DS2155 the designer must plan for the reconfiguration of these pins on the PCB in order to use the ESIB feature.

5.2 NEW FEATURE FOR PIN 3

The TEST pin in the DS21x5y has been renamed to TSTRST in the DS2155. In the DS21x5y this pin would force all outputs and I/Os to high Z. In the DS2155 this pin will cause a register reset when set high along with forcing all outputs and I/O pins to a high Z state.

5.3 NEW FEATURE FOR PIN 14

The 8MCLK pin of the DS21x5y has been renamed to BPCLK in the DS2155. In the DS21x5y this pin was an 8.192MHz output. In the DS2155 this pin can be programmed to output 2.048, 4.096, 8.192, or 16.384MHz.

Scenario #1

When the DS2155 is used in an existing DS21x5y design this pin can be programmed to 8.192MHz by setting register CCR2 = 05h

5.4 RECEIVE AND TRANSMIT TERMINATION

The DS2155 has an enhanced line interface unit (LIU). There are internal, software selectable provisions for terminating the receive and transmit pair. Receive and transmit termination can be altered via software in the DS2155 eliminating the need to change external components. Shown in Figure 2 is the basic interface circuit for the DS2135y (3.3 volt) family. Rt is set to 0 ohms for T1, and to 11.6 ohms or 6.2 ohms in E1 mode depending on the line type (120 ohm twisted pair or 75 ohm coax) when a high return loss value is required. R is set to 50 ohms for T1 and 37.5 ohms or 60 ohms for E1 operation depending on the line type.

Scenario #1

When the DS2155 is used in an existing DS2135y design, the internal termination features can be disabled if the external circuitry cannot be modified to allow the software controllable termination features to be utilized.

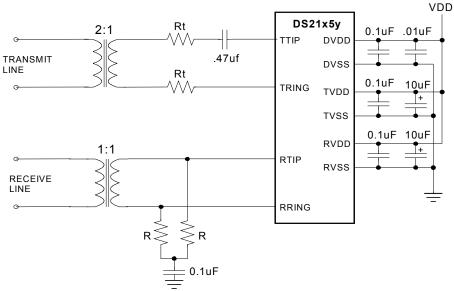


Figure 2. DS21x5y NETWORK INTERFACE

Scenario #2

Figure 3 shows the basic circuit for the DS2155. In this circuit R is set to 60 ohms. This value is adjusted internally via software for T1 and E1 operation. Rt is not needed since the DS2155 transmitter can control source impedance via software for T1 and E1 operation. The user should consult factory application notes for "over voltage" protected interface designs.

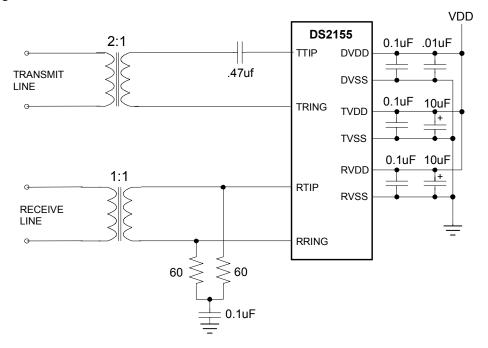


Figure 3. DS2155 NETWORK INTERFACE

5.5 NEW USER OUTPUT PINS IN THE DS2155

Four new pin functions have been added to the DS2155 to provide control of external user hardware. These pins replace 4 No Connects on the DS21x5y and are located at pins 8 (UOP0), 9 (UOP1), 23 (UOP2), and 15 (UOP3). Refer to Section 33 of the DS2155 data sheet for more information on these four pins.

Scenario #1

When using the DS2155 in an existing DS21x5y design the unterminated user outputs will not cause any problems.

Scenario #2

When provisioning a DS21x5y design to accept the DS2155, connections to these NC pins of the DS21x5y will not cause a problem.

6) Summary

The DS2155 is a T1, E1, and J1 Single Chip Transceiver (SCT) that builds upon the previous generation of SCTs offered by Dallas Semiconductor. In the process of combining the T1/J1 and E1 modes of operation into a single die, all of the functionality of the DS21x5y SCTs is kept intact, but many of the previous register addresses and control bits have been relocated in the DS2155. In addition to software considerations, the migration of designs from the DS21x5y to the DS2155 is simplified by the pin compatibility of the DS2155.